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1.0 INTRODUCTION

This report summarizes the System Architecture Study of the Sensor Data
Validation and Reconstruction Task of the Development of Life Prediction Capabilites For
Liquid Propellant Rocket Engines Program, NAS 3-25883. The effort to develop
reusable rocket engine health monitoring systems has made apparent the need for life
prediction techniques for various engine systems, components, and subcomponents.
' he design of reusable space propulsion systems is such that many critical components
are subject to extreme fluctuations causing limited life, which is not adequately explained
by current techniques. Therefore, the need exists to develop advanced life prediction
techniques. In order to develop a reliable rocket engine condition monitoring system,
erroneous transducer data must be identified and segregated from valid data.
Erroneous sensor data may result from either (1) "hard" failures which are typically large
in magnitude and occur rapidly or (2) "soft" failures which are typically small in magnitude
and occur slowly with time. The underlying causes of such failures can include physical
damage (e.g. wire or diaphragm breakage), calibration/software errors, or thermal drift.
The objective of this task~has been to develop a methodology for using proven analytical
and numerical techniques to screen the SSME CADS and facility data sets for invalid
sensor data and to provide signal reconstruction capability. This methodology is
structured to be an element of an overall Engine Diagnostic System [1].

The approach taken to develop this methodology has been to evaluate sensor
failure detection and isolation (FDI) and signal reconstruction techniques relative to the
problem of SSME sensor data validation. From this evaluation, applicable techniques
have been identified and an overall computational strategy has been developed to
provide automated FDI and signal reconstruction capability. The overall computational
strategy is based on the use of an advanced data synthesis technique which is capable
of combining the results of several different test of sensor validity (such as limit checks,
hardware redundancy, sensor reliability data, and predictive models). The output of this
task is a software specification for this strategy and a software implementation plan.

1
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2.0 EXECUTIVE SUMMARY

The current SSME data validation procedure at NASA MSFC is based on a
manual review of test data by expert analysts. To date this system has worked well, but
is an inefficient use of the valuable time of the expert, who must visually inspect each
data plot looking for anomalous data. One of the key elements of the Engine Diagnostic
System currently under development by NASA, is to exploit recent advances in
computational and graphics performance of modem RISC type work stations and I
advanced computational techniques to automate, streamline, and improve the rocket
engine diagnostic procedure. The System Achitecture Study described in this report has
addressed this issue for the problem of sensor data validation. Verifying test data is
essential prior to doing performance calculations or engine health assessments.

The System Architecture Study has consisted of (1) a review of the current SSME
data validation process at MSFC, (2) selection of key SSME CADS and facility data set
parameters for which automated data validation and reconstruction is desirable, (3)
review and selection of potential techniques for parameter fault detection and
reconstruction, and (4) development of a computational scheme incorporating the •
techniques. Based on the work conducted in this phase of the program a software
specification of the Sensor Data Validation and Reconstruction System (SDV&RS) has
been developed and is described in detail in Section 4.0. The recommended
development plan for implementation of the software specification is described in Section
5.0.

A wide range of sensor failure modes exists for the SSME digital data sets. Table
1 lists some of the causes and effects of several known modes documented in the SSME
Failure Modes and Effects Analysis [2] and documented in the UCR (Unsatisfactory
Condition Report) database. The resultant transducer signals range from hard-open, U
shorted, noisy, intermittent, to slight drifts and shifts. In order detect, isolate, and
reconstruct signals resulting from this wide range of failure modes several potential
validation techniques have been reviewed and evaluated. Table 2 summarizes the
techniques which have been examined for use in the SDV&SR system.

No single fault detection scheme appears solely capable of accurately detecting
and reconstructing all of the important SSME sensor malfunctions. Each technique
provides some evidence regarding sensor failure, and different techniques work best for
different failure modes. The overall conclusion of this study is that the best approach for

2
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NAS 3-25 63 1
robust and complete sensor data validation is to use several methods and fuse their
individual results into a single pass/fail decision for every sensor at every time slice in the
test.I

Information fusion techniques provide explicit representation of and accounting

for the uncertainties in the sensors and in the various fault detection schemes. Of the
various techniques for performing information fusion, Belief Networks have been
determined to be the most appropriate for the advanced liquid rocket engines such as
the SSME.

The overall SDV&SR system as currently specified is illustrated in Figure 1. The
system will run in two major stages; initial batch processing mode, followed by an
interactive post processing mode. In the batch mode, the SSME test data (in
engineering units) is thoroughly analyzed by the sensor validation system, with PID
failure detection and PID value reconstruction performed automatically and stored in a
separate data file. The batch mode process will be completed overnight following a test

and the results will be available to the analyst at the start of the day. The purpose of the
interactive mode is to allow analysts to quickly review and understand the results of the

batch mode processing and either confirm or override the failure and reconstruction
decisions made by the sensor validation system.
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3.0 TECHNICAL DISCUSSION I

The following section describes the technical progress accomplished during the
Phase 1 of the task. The principle sections consist of (1) review of SSME test data and
current validation procedure, (2) evaluation of fault detection and signal reconstruction
techniques, and (3) review of information synthesis techniques for combining tests of
sensor validity.

3.1 Review of SSME Test Data and Validation Procedure
3.1.1 SSME CADS and Facility Digital Data
The SSME CADS and facility data sets consist of approximately 130 and 280

individual parameters re, pectively. Each parameter is identified with a unique number
code call a parameter identification number (PID). The various PIDs consist of
transducer signals, calculated parameters, and controller signals. 0' the approximately
410 PIDs, there are approximately 325 actual sensor signals. A complete PID list is
provided in Appendix A.

A review of CADS and facility sensors for which automated data validation and
reconstruction would be desirable has been conducted. The list sensors for which
validation and signal reconstruction selected is given in Table 3. A total of 115
transducers have been selected. The criterion used to select a sensor for validation
were, in order of importance: 3

(1) Is the sensor an engine control parameter?
(2) Is the sensor an engine redline parameter? 3
(3) Is the parameter plotted for pre or post-test reviews?
(4) Is the sensor used in the steady state engine power balance model?
(5) Additional sensors providing redundancy or correlation to sensors in (1)

through (4).
Categories (1) and (2) comprise the most critical sensors in the engine. Sensors

which fall under category (3) are assumed to be important for diagnosing engine health
since they are routinely examined by the MSFC SSME data analysts. It is expected that
engine diagnostics elements of the Engine Diagnostic System (EDS) would use the
same set of inputs. The sensors falling under category (4) should be validated since 3
they are used in the performance model calculate specific impulse of the engine.

8IB 3

I



Table 3. SSME Sensors Selected For Sensor Valldat'on

MEAS PID DATA DATA
MEASUREMENT SET UNITS LOW HIGH DISCRIVIION

MCC COOLANT DISCH PRESS CH Al C 17 PSIA 0 7000 Pressure
MCf COOLANT DISCH TEMP CH B C 18 DEG R 360 760 Temperature
MCCOXIDINJTEMP C 21 DEGR 110 610 Temperature
MCC HOT GAS INJ PRESS CH A C 24 PSIA 0 7000 Pressure
LPOP SPD CH B C 30 RPM 180 6000 Rate
LPFP SPD CH A C 32 RPM 600 20000 Rate
HEX DS PR (A49P9655H) C 34 PSIA 0 7000 PressureHPFP COOLANT PRESS CH A C 53 PSIA 0 4500 Pressure
HPFP COOLANT PRESS CH B C 54 PSIA 0 4500 Pressure
HPOTP SEC SEAL CAV PRESS CH A C 91 PSIA 0 300 Pressure
HPOTP SEC SE kL CAV PRESS CH B C 92 PSIA 0 300 Pressure
PBP DISCH TEMP CH A C 93 DEG R 160 210 Temperature
PBP DISCH TEMP CH B C 94 DEG R 160 210 Temperature
MCC PRESSURE CH A2 C 129 PSIA 0 3500 Pressure
MCC PRESSURE CH AI C 130 PSIA 0 3500 Pressure
FUEL FLOWRATE CH Al C 133 GPM 1080 18000 Rate
MFV ACTUATOR POSITION CH A C 136 PCT -5 105 Position/Disp.
MFV ACTUATOR POSITION CH B C 137 PCT -5 105 Position/Disp.
MOV ACTUATOR POSITION CH A C 138 PCT -5 105 Position/Disp.
MOV ACTUATOR POSITION CH B C 139 PCT -5 105 Position/Disp.
OPOV ACTUATOR POSITION CH A C 140 PCT -5 105 Position/Disp.
OPOV ACTUATOR POSITION CH B C 141 PCT -5 105 Position/Disp.
FPOV ACTUATOR POSITION CH A C 142 PCT -5 105 Position/Disp.
FPOV ACTUATOR POSITION CH B C 143 PCT -5 105 Position/Disp.
CCV ACTUATOR POSITION CH A C 145 PCT -5 105 Position/Disp.
CCV ACTUATOR POSITION CH B C 146 PCT -5 105 Position/Disp.
HYDRAULIC SYS PRESSURE A C 147 PSIA 0 4000 Pressure
FUEL PREBURN PGE PRESS CH A C 148 PSIA 0 1500 Pressure
OXID PREBNR POE PRESS B C 149 PSIA 0 1500 Pressure
HPFP DISCH PRESS CH A C 152 PSIA 0 9500 Pressure
FPB CHMBR PR A C 158 PSIA 0 7000 Pressure
PBP DISCH PRESS CH B C 159 PSIA 0 9500 Pressure
MCC PRESSURE B2 C 161 PSIA 0 3500 Pressure
MCC PRESSURE BI C 162 PSIA 0 3500 Pressure
HPOP DISCH PRESS CH A C 190 PSIA 0 7000 Pressure
LPFP DISCH PRESS CH A C 203 PSIA 0 300 Pressure
LPFP DISCH PRESS CH B C 204 PSIA 0 300 Pressure
LPOP DISCH PRESS CH A C 209 PSIA 0 600 Pressure
LPOP DISCH PRESS CH B C 210 PSIA 0 600 Pressure
HPOTP I-SEAL PGE PRESS CH A C 211 PSIA 0 600 Pressure
HPOTP I-SEAL PGE PRESS CH B C 212 PSIA 0 600 Pressure
HYDRAULIC SYS PRESSURE CH B C 214 PSIA 0 4000 Pressure
FUEL SYS PGE PRESS CH A C 219 PSIA 0 600 Pressure
FUEL SYS P'I-E PRESS CH B C 220 PSIA 0 600 Pressure
POGO PRECIIG PRESS CH A C 221 PSIA 0 1500 Pressure
POG0 PRECHG PRESS CH B C 222 PSIA 0 1500 Pressure
EMERGSHTDNPRESSCHA C 223 PSIA 0 1500 Pressure
EMERG SHT DN PRESS CH B C 224 PSIA 0 1500 Pressure
LPFP DISCH TEMP CH A C 225 DEG R 30 55 Temperature
LPFP DISCH TEMP CH B C 226 DEG R 30 55 Temperature
HPFT DISCH TEMP CH A C 231 DEG R 460 2760 Temperature
HPFT DISCH TEMP CH B C 232 DEG R 460 2760 Temperature
HPOT DISCH TEMP CH A C 233 DEG R 460 2760 Temperature
HPOT DISCH TEMP CH B C 234 DEG R 460 2760 Temperature
MFV HYD TEMP CH A C 237 DEG R 360 760 Temperature
MFV HYD TEMP CH B C 238 DEG R 360 760 Temperature
MOV HYD TEMP CH A C 239 DEG R 360 760 Temperature
MOV HYD TEMP CH B C 240 DEG R 360 760 Temperature
FUEL FLOWRATE CH A2 C 251 GPM 1080 18000 Rate
FUEL FLOWRATE CH B2 C 253 GPM 1080 18000 Rate
FUELFLOWRATECHAI C 258 GPM 1080 18000 Rate
HPFP SPD A C 260 RPM 1350 45000 Rate
HPFPSPDB C 261 RPM 1350 45000 Rate
ANTI-FLOOD VLV POSCH A C 268 PCT -5 105 Position/Disp.
ANTI-FLOOD VLV POS CH B C 269 PCT -5 105 Position/Disp.
FUELFLOWRATECHBI C 301 GPM 1080 18000 Rate
LVL S BARO PR F 316 Pressure
HPOP DS PR NFD F 334 PSIA 0 7000 Pressure
PBP DS PR NFD F 341 PSIG 0 9500 Pressure
MAIN INJECTOR LOX INJECTION PR N F 395 PSIG 0 5000 Pressure
LPFTINPR F 436 PSIG 0 10000 Pressure
HPFTP DISCH PR NFD F 459 PSIA 0 9500 Pressure
OPB PC F 480 PSIS 0 10000 Pressure
MFV DIS SKIN TI F 553 DEG R 35 560 Temperature



II
Table 3. Con't.

MEAS PID DATA DATA
MEASUREMENT SET UNITS LOW HIGH DISCRIPTION

MFV DIS SKIN "2 F 554 DEG R 35 560 Temperature
MCCLOXDOMETNO3(NOTAPPROV F 595 DEGR 110 610 Temperature I
HPFP CLNT LINER TEMP F 650 DEG R 0 560 Temperature

HPFP DS TEMP F 659 DEG R 30 1200 Temperature
ENGINE FUEL FLOW NFD (A49RS038A) F 722 GPM 0 29000 Rate
LPOP SPD N1 D (A49R8651A) F 734 RPM 0 6400 Rate
LPFPSPDNFD (A49R8001A) F 754 RPM 0 24000 Rate
HPFP SPD NFD (A49RS101A) F 764 RPM 0 48000 Rate

ENGFLINPR2 F 819 PSIS 0 100 Rate
ENGFLINPRI F 821 PSIS 0 100 Pressure
ENGFLINPR3 F 827 PSIS 0 100 Pressure
ENG OX IN PR I F 858 PSIS 0 250 Pressure
ENG OX IN PR 2 F 859 PSIS 0 250 Pressure
ENG OX IN PR 3 F 860 PSIS 0 250 Pressure
HEAT EXCHANGER INTERFACE PRESS F 878 PSIS 0 5000 Pressure
HEAT EXCHANGER INTERFACE TEMP F 879 DEG F 160 1900 Temperature
HPOP PR SL DR PR I F 951 PSIG 0 100 Pressure
HPOP PR SL DR P2 F 952 PSI 0 100 Pressure
HPOP PR SL DR P3 F 953 PSI 0 100 Pressure
ENGINE GN2 PURGE INTRF PRESS F 957 PSIS 0 1000 Pressure
HPOT PR SL DR PR F 990 PSIG 0 100 Pressure
FAC LH2 FLOWMETER OUTLET TEMP F 1017 DEG R -430 -380 Temperature
LPTOP INLET TEMP F 1058 DEGR 160 180 Temperature
FAC FUEL FLOW I F 1205 GPM 0 22000 Rate
FAC FUEL FLOW 2 F 1206 GPM 0 22000 Rate
FAC OX FLOW 1 F 1212 GPM 0 8500 Rate I
FAC OX FLOW 2 F 1213 GPM 0 8500 Rate
HORZ FIA F 1345 KLB 0 100 Force
HORZF2A F 1350 KLB 0 100 Force
VERTF1A F 1360 KLB 0 225 Force
VERTFIB F 1361 KLB 0 225 Force I
VERTF2A F 1365 KLB 0 225 Force

VERTF3A F 1370 KLB 0 225 Force
VERT F3B F 1371 KLB 0 225 Force
AFV DIS SKIN TEMP NO I F 1420 DEG R 160 560 Temperature
AFVDISSKINTEMPNO2 F 1421 DEGR 160 560 Temperature
GIM BR LNG 1 (A49D8607A) F 1543 GRMS 0 30 Vibration

GIM BR LNG 2 (A49D8608A) F 1544 GRMS 0 30 Vibration
GIM BR LNG 3 (A49D8609A) F 1547 GRMS 0 30 Vibration
MCC LINER CAV P2 F 1956 PSI 0 200 Pressure
IMCC LINER CAV P3 F 1957 1 200 Pressure

I
I
I
I
I
I
I
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The specific breakdown of sensors for which data validation and reconstruction is
recommended is:

Engine Control Parameters 13 PIDs
Flight Red Une Sensors 16 PIDs
Test Red Une Sensors 23 PIDs
Sensors Used For Engine Diagnostic 39 PIDs
Sensors Used In Power Balance Model 23 PIDs

3.1.2 Current SSME Data Validation Procedure
The current SSME data validation procedure at NASA MSFC was reviewed to (1)

determine the performance requirements (turn-around time, accuracy, etc.) of an
automated data validation and reconstruction system from a user stand point, (2) assess
the techniques currently employed for data validation, and (3) obtain first-hand
knowledge of the characteristics of the SSME data. Interviews were conducted with
NASA and Martin Marietta personnel directly involved in day-to-day evaluation of test
data. Summaries of the specific interviews are contained in Appendix A.

Sensor data validation is the responsibility of Martin Marietta data analysts
employed at NASA MSFC. Data validation is performed as part of their overall
responsibility for assessing the health of particular engines. The current MSFC data
validation process is illustrated in Figure 3. The elements of the process described
below. A detailed description of the process is contained in Reference [1].

1.0 Following an SSME test firing at NASA Stennis, the raw test data
(voltages) are converted to engineering units using transducer calibration
data. The data is transferred to NASA MSFC and down loaded to Perkin
Elmer 4 computer system.

2.0 A standard set of plots is prepared and is available to the data analyst by
8:00 am following the day of a test. Included in these plot packages are
data from previous test firings which have been requested by the data
analysts. These previous data are chosen from the most recent tests
which involved either the (1) the same engine, (2) the same power-head
set, and (3) preferably the same test stand (Al, A2, or B2).

11
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3.0 The test data packages and data files are simultaneously reviewed by two

groups. The first group is the performance analysis group which uses the

test data as Input to the SSME steady state power balance model.

4.0 Concurrent with the power balance analysis the Systems Analysis Group
(typically one lead analyst and one support analyst) performs a manual

review of the data and use existing data validation codes to screen the
data. The group currently uses two FORTRAN computer codes to screen
data to detect faulty data.
- Two Sigma Comparison Code:
- Spike Detection and Shift Code:

5.0 Comparison of results are made between the two groups to identify
potential faulty data. By the conclusion of process 5.0 (typically an eight
hour shift), all anomalies detected in the data are attributed to engine
behavior or transducer malfunction.

6.0/7.0 The results of the test data analysis process (3.0, 4.0, and 5.0) are
presented in the post test review. Instrumentation action items are flagged
for the next pretest review.

Sensor data validation occurs in steps 3.0 and 4.0. As indicated on the process

flow diagram results from the power balance calculation and the manual data review are
shared. It is not uncommon for the initial run of the power balance model to produce
anomalous results (typically a noticeable change in calculated specific impulse). After
detailed inspection of the input PIDS and intermediate calculations of the model, failed
sensors are identified and excluded from the input deck of the model. Soft failures

present a particular problem to the power balance model because their magnitude is
often not large enough to violate currently employed limit checking procedures, but can
significantly impact calculation of key performance parameters.

When a sensor is suspected of a failure, a "confirmation" procedure is used to
confirm failure. The experienced data analyst will look at the following evidence to
determine a sensors validity.

13
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1. Pre and post test values indicate if the transducer was scaled, calibrated, I
or installed improperly. Additionaly, if a sensor does assume a normal
steady post test value, then transient effects such as thermal drifts may 3
have caused the failure.

2. Related sensors (such as upstream and downstream pressures and
temperatures) are inspected to see if they agree with the failed sensor.

3. The signal is compared to previous measurements made with the same
engine components. I

Several aspects of the current NASA MSFC data validation procedure have been 3
adopted in the Sensor Data Validation and Signal Reconstruction System described in
section 4.0. These key features are:

1. integration of many sources of information for determining sensor K
validity (see Section 3.3);

2. use of calculated engine system parameters to indicate an
inconsistent sensor reading (see Section 3.2 on characteristic
equations);

3. comparison of data patterns to known *nominal" patterns.

3.1.3 SSME Sensor Failure Modes
A wide range of sensor failure modes exist for the SSME digital data sets as

summarized in Table 1. The general requirements of the senser data validation and
reconstruction system to detect these diffent types of failure modes is described in the 3
Systems Users Requirements Summary Report in Appendix A. During the task, data
from 20 recent SSME test firing was reviewed to identify common failure modes Table 4

lists 22 sensors which were documented as failed in the 20 tests reviewed. Of the 22 I
sensors, 13 failed only once in the 20 tests examined and a few sensors such as the Fuel
Preburner Chamber Pressure, PID 158, which has history of thermal drift, failed on 85% m

of the tests. Extension of the sensor failure frequency data to a larger number of tests
will allow a more comprehensive database of sensor reliability to be constructed. The

use of such data can be incorporated into the SDV&SR data system as described in

Section 3.3. i

14 l
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Figure 4 illustrates four common failure signatures of the SSME pressure and flow

transducers. Thermal drift of the FPB Pc and the OPB Pc are common failure modes
due to their installation on the SSME. The characteristic behavior is for the signal to

appear normal during startup, but during mainstage to begin to decay due to icing.

Intermittent or "hashy" signals are typically due to poor electrical connections as noted in

Table 1. These signals generally appear normal except for large spikes off scale either

over or under the scaled range. Fuel turbine flow meters and pump speed transducers

can exhibit signal aliasing such that false signal fluctuations appear in the data. During
power level transitions many pressure and temperature transducers experience over and
under shoot causing their data to be invalid during a brief period of time while recovery
occurs. This type of behavior is considered a sensor failure because the data is not
valid, even though there is not a problem with the transducer. Figure 5 shows some of
the documented SSME sensor failures.

15
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3.2 Evaluation of Fault Detection and Signal Reconstruction Techniques
Table 2 summarizes the various fault detection and isolation techniques which

were reviewed during the task. As noted in the table, applicable literature for the various
techniques has been reviewed and in some cases demonstrated with available SSME
test data at Aerojet. A description of the applicability and limitations of each of these
techniques as applied to SSME data is given below.

3.2.1 Statistical Comparison Techniques
Statistical comparison techniques cover the class of techniques where the signal

value or statistics of the transducer signal are compared to known "acceptable" values.
Three of these techniques which are suitable for SSME data validation are described
below. The first technique is limit checking tests which serves as a basic indicator if a
transducer signal is within the expected envelope of "nominal" operation. The second
technique discussed is an extreme value exceedance test which can differentiate true
signal behavior from spurious spikes in the data. The third statistical comparison test is
a moving average test which indicates if a significant trend exists in the data.

Comparison of a signal to predefined limits constitutes the simplest form of
sensor data validation [3,4]. If the signal exceeds the limit it is considered Hout of family"

and indicates either an instrumentation error or an engine component failure. Common
limits used in data validation schemes are:

1. High and low data ranges of the transducer

2. Two or three standard deviation variation from the mean
3. Comparison of signal statistical values to "family" averaged values.
Limit checking is for sensor failure detection is limited to severe hard failures. In

order to detect soft failures such as drifts, simple limits must be set so tight that an
unacceptably high number of false detections occur. Currently the SSME test data is
compared to the "Two Sigma" database as part of the data analysis. Figure 6 shows
some typical data plot with the two sigma limits indicated.

A table of the "Two Sigma" database is given in Appendix C. In order to rationally
compare different tests, the average values of parameters are taken at (1) the maximum
fuel turbine temperature, (2) the maximum oxidizer turbine temperature, and (3) at the
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nominal 104% LOX vent. Figure 7 shows a typical thrust profile and the locations of each
of the conditions listed above.

The Nsigma" bands reflect a wide variation in "nominal" operating conditions for
some parameters. This variability is due to the averaging effect obtained by using data
from various engines and test stands when populating a statistical database. While
these statistically based techniques are relatively effective in detecting signals that have a
large drift or a low signal to noise ratio, it is possible that a noisy signal can lie within the
"sigma" band and go undetected. This is shown graphically in Figure 3.

Data Spikes Detection
Data spikes are sharp and significant changes in data, not attributable to

measurable physical phenomena, but due to a instrumentation anomaly, such as a
malfunctioning A/D converter. Removal of spurious spikes from measured data is
necessary to improve quality of the data and therefore any conclusions drawn from the
data.

One approach to identifying such spurious signals is with extreme value
probability theory [5]. Extreme value theory is concerned with the probability distribution
of the extreme value of a sample of n independent observations of a random variable.
Given this extreme value probability distribution, a detection limit can be established with
an arbitrarily low probability of exceedance for the largest value of n independent
observations.

The theoretically exact distribution of the extreme largest value (Y) from n
independent observations of a random variable (X) is defined in terms of cumulative

distribution functions:
Fy(y) = [Fx(y)]n

The particular value of Y =y corresponding to a cumulative probability p can then

be determined from the distribution of X as follows:
[Fx(y)]n = p
Fx(y) = pl/n

y = Fx- 1 (pl/n)

Thus y is determined directly from the inverse cumulative distribution function of X.
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For example, let n = 10,000 be independent observations of a normal variate X I
and let p = 0.99 define the arbitrarily established detection limit. Then this detection limit
(y) is calculated as follows in terms of standard deviations from the mean. H

y = Fx- 1 (pl/n) = Fx- 1 (0.999999) = 4.76 I

The inverse of the normal cumulative distribution function is conveniently tabulated.

Therefore if the detection limit is set at 4.76 standard deviations above the mean

of a normal distribution and if 10,000 independent observations are made of this normal
random variate, then the single largest of these observations will be expected to exceed
this detection limit, on the average, one percent of the time. More realistically, many

sensors which are prone to spiked data will usually have an exceedance probability
much greater than one percent. This higher probability can be determined by

examination of previously obtained data, and reflected by lowering P to a more realistic
value. Such application of extreme value theory can be used to define a detection limit,
the exceedance of which may reasonably be assumed to constitute a spurious data

spike.

Moving AveragesI
As discussed in Section 3.1.3, soft failures usually manifest themselves as slowly

changing drifts typical of thermally sensitive failure modes. As seen in Figure 6, varying
amounts of dynamic fluctuations of the signals about their mean values occur during
steady power level operation of the SSME. The sources of these fluctuations are (1)
quantitization error during A/D conversion, (2) electrical noise induced by mechanical
vibration of engine, and (3) dynamic excursions of the engine resulting from the closed

loop control logic of the engine. In order to extract the true trend data signal a simple
moving average of the data can be calculated [6,7]. Some SSME failure detection

algorithms such as the System For Anomaly and Failure Detection (SAFD) [8] algorithms

are based on monitoring the moving average of many parameters. Figure 9 illustrates
the smoothing effect of a noisy signal by applying a moving average calculation. The

simplest moving average can be defined as: I
Yi =7 Yi/N

I
24

I



NM 3-5U3

where: N = a fixed number of previous points (25 for a 1 second
average of CADS data)
Yi = sensor reading at a given time slice

The moving average smooths the signal and reveals the true trend of the data.

While the overall trend is apparent to a trained expert, evaluation of the time derivative
from the raw signal at a given time slice can yield a meaningless result (e.g. a positive
value when the true trend has a negative slope).

The moving average computation provides a good means of extracting trend data
from signals. For sensor fault detection the signal trend is insufficient to identify a bad
signal. The trends (transients) in sensor values of the SSME can be caused by factors

other than power level change, such as (1) engine component anomalies, (2) propellant
transfer which causes changes in propellant inlet temperatures, and (3) propellant tank
venting and repressurization, which causes pump inlet pressure changes.

3.2.2 Analytical Redundancy Techniques
Analytical redundancy for sensor data validation consists of three parts, (1)

parameter estimation, (2) parameter fault detection, and (3) fault isolation [10, 11, 12].
The principle advantage of analytical redundancy techniques over the statistical

comparison techniques discussed above is that the parameter estimation model
provides a means of signal reconstruction which is a key element of the SDV&SR

system.
The major uncertainties regarding the development of an analytical redundancy

capability for the SSME sensors have been addressed. These issues are the following:

1. How many of the Sensor PIDs of interest can be can be modeled as linear
or nonlinear combinations of other parameters?

2. Is the accuracy of these models sufficient to enable reasonable fault
detection?

3. Can a robust fault isolation methodology be developed for the resulting
models?

Issues (1) and (2) above involve a basic tradeoff model complexity (i.e. number of
terms in equations and form of model) and the accuracy of the estimate, as illustrated in
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Figure 10. Two schemes which represent the limits of this tradeoff are (1) the "dedicated
observer scheme" (DOS) [13] and (2) the "generalized observer scheme" (GOS) [14]
shown Figure 11. The DOS technique performs sensor fault detection by assigning a
dedicated estimator to each of the sensors. Each estimator (e.g. a least squares fit of
another sensor output to previous test data or an ARMA model [15]) is driven by only a
single sensor output The output of the estimator, Y', is then compared to the sensor
measurement, Y, to produce a residual r. The residual is then compared to a threshold
limit, 0, to determine if a fault has occurred.

The "generalized observer scheme" is similar to DOS except that it is constructed
such that the estimator is driven by all the output sensors except that of the respective
sensor. In theory, the "generalized observer scheme" provides the most accurate
estimate (for a given class of estimators, such as linear regression models) of sensor
output and therefore the best fault detection because it makes use of all available
information in the system. The obvious draw back of the GOS approach is that fault
isolation becomes difficult since a single point failure may cause failure of many
estimators. On the other hand, the "dedicated observer scheme" can easily
accommodate single point and most multi-point failure instances provided the large
number of different PIDs used as the independent variables is approximately the same
as the number of equations.

Parameter Estimation
Two approaches were investigated to generate estimator models for each of the

SSME CADS and facility parameters specified for validation and reconstruction. The first
approach was the use of engine characteristic equations which physically relate
parameters. The second approach was to generate empirical regression equations
based on existing SSME test data. Each of these techniques is discussed below.

Engine Characteristics
Engine characteristics are parameters which describe the performance of a

particular engine and its components (Table 5 shows some examples of engine
characteristics). The set of characteristics for an engine form a "fingerprint" which
describes the engine's idiosyncrasies relative to all other engines in the same family
tested thus far.
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Table 5. Typical Uquid Rocket Engine Characteristics I
Une Resistance aP/(Density Flow 2)
Pump Affinity Flow/Speed 3
Pump Affinity Head/Speed2

C* PC A t/Flow

Characteristics can be computed for every engine and then entered into a
database for comparison with the characteristics from all engines in the family. Any
characteristic which is "out of family" (the largest or smallest value seen, or close to it)
warrants investigation. Armed with the equations for computing characteristics, and the 3
assumption that only one sensor or component can fail at a given time, analysts can
quickly narrow in on the sources of anomalies. In the example shown in Figure 12, three
line resistances are calculated given readings from three pressure sensors, a
temperature sensor (for computing specific gravity), and a flow sensor. In this example
the two partial resistances R1i-2 and R2-3 are out-of-family, while the overall resistance
R1i-3 is normal. The only explanation for this, assuming a single-point failure, is that
pressure sensor P2 has failed (i.e., biased high). Had all three resistances been out-of- i
family in the same direction (i.e., high or low) then either the temperature or flow sensors
would be suspect. U

Engine characteristics provide relatively invariant relationships among small sets
of sensors, thus they are good predictors for use in sensor validation. One approach to
using characteristics for sensor validation is the following:

1. Sample a small segment of data for the engine under test and compute all
characteristics.

2. If any characteristic is out-of-family, then suspect all sensors involved in its
calculation (i.e., there was a possible sensor failure in the initial sample data).

3. The engine's characteristics are computed for each time slice and compared to U
the sampled characteristics. If the residual between any sampled and computed
characteristic is larger than a threshold (say 2 sigma), then the sensors involved 3
in the calculation are suspect.

(See Section 3.3 for a discussion of how these "suspicions" can be integrated into a final U
decision regarding sensor failure.) 3
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To evaluate the approach outlined above for use on the SSME data, 15 I

characteristics relating 19 non-redundant PIDs were derived and tested to see how well
they would perform as predictors.

To derive the characteristics, SSME flow diagrams were annotated with available
PIDs, and the characteristic relations were then encoded through analysis of these
diagrams. Figure 13 and 16 show examples of annotated flow diagrams along with its
derived characteristics, and Table 6 shows the complete list of characteristics evaluated.

To evaluate whether family-averaged characteristics could be used as predictors, I
characteristics were computed for three test data sets at 109% steady-state power levels
(A2492, A2493, and A2495). Characteristics were averaged over these three runs and I
then used as predictors for a fourth test data set (A2497) at its 109% steady-state power
level. The results of this experiment are shown in columns 3 and 4 of Table 7. 3

As discussed above, an alternative approach to family-averaged characteristics is
to take a small sample of data from the test set, compute engine-specific characteristics
from this sample, and then use these characteristics as predictors. A second
experiment was performed to evaluate this approach. A sample of the 109% steady-
state data was takp- f'j seconds of test A2497) and then used to predict PID values for I
the remainder r, t', 109% steady-state data. The results of this experiment are shown
in columns 5 and 6 of Table 7. 1

In aimost every PID prediction in the two experiments the sampled characteristic
performed significantly better as a predictor than the family-averaged one (i.e., the
residuals-the difference between the sensed value and the predicted value-were larger
for averaged characteristics than for sampled ones). This can also be seen graphically
from plots of sensed vs. predicted PID values. Figure 15 shows a prediction and
residual for PID 1205 using a family-averaged characteristic (LPFP 0/N). Figure 16
shows the same prediction using a sampled, engine-specific characteristic.

A final test was conducted to determine how well characteristic-based predictions

would perform on transient test data. The characteristics sampled at the 109% power •
level in the previous experiment (for test A2497) were used to predict PID values during
the first 30 seconds of the same test. Unfortunately, only 5 of the 42 predictions 3
performed well enough to be usable during transient conditions. Figure 17 shows a
typical prediction whose residual is too large during the transibnt conditions to make it
usable for sensor validation.

The characteristic model development work is contained in Appendix B.
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Table 6 Characteristic PID Relations Evaluated

Characteristic Equation PID Relation Label

Pump Flow/Speed OIN - Constant P1 21 2/P30 - Constant LPOP 0ON
P1205/P32 - Constant LPFP 0/N
P133/P260 - Constant HPFP 0/N

Pump AHeadVSpeed A2 AP/N A2 - Constant (P209.P860)/P30A 2 - Constant LPOP H/N2
(P203.P8191P32A2 - Constant LPFP HIN2

_____________(P2-P133)/P26OA 2 - Constant HPFP HIN2
Line Resistance &P/OA2 -Constant (P9O.P395)/P1212 A2 - Constant HPOP Ri

(P52-P129)P133 A2 - Constant MC RI
(P52-P17)/PI33 A2 - Constant MC R2
(P17-P436)/P133 A2 - Constant MC 43
(P52-P436)'P133A2 - Constant MC R4
(P59-P58)/P1212A 2 - Constant PRE RI
(PP59-P480)/P1 212 2A2 - Constant PRE R2
(P2O9-P9O)/P1212 A2 - Constant HPOP R2
(P209-P395)/P1212 A2 - Constant HPOP R3

35



Table 7 Results of Steady-State Characteristic Experiments

Predicted Characteristic J~eae hs ceitc 5amtied Char icteristics PID Rating
PID Used Observed Observed Observed Observed (3S)

___________Residual Avg Residual IS -Residual Ave Residual 3S______
P1212 LPOPQJN 4.26E+1 8.32E+1 -1.3611+1 7.98E+1 8.50E+ I

P30_____ -3.67E+1 7 '16E+1 1. 16E+ I 6.81E+l 5.89E+ 1
P209 LPOPH/N2 3.OOE+0 6.94E+0 6.33E-1 6.94E+0 1.20E+1I
P860 -3.0013+0 6.94E+0 -6.33E-1 6.94E+O 5.OOE+O
P30 .______ -2.95E+1 6,83E. I - 6.19E+O 6.78E+1 5.89E+l
P90 HPOPRI 5.45E+0 3.14E+1 1.27E+0 3.16E+1 1.40E+2
P395 *5.45E+0 3.14E+1 -1.27E.0 3.1611+1 2.50E+1
P1212 _______ -4.78E+1 2.79E+2 -1.05E+1 2.78E+2 8.50E+l
P1205 LPFPOJN -6.51E+2 1.25E+2 -4.42E+0 1.21E+2 2.20E+2

P32_____ 6,33E+2 I1.21E+2 4.47E+0 1 .22E+2 1 .98E+2
P203 LPFPHIN2 8.57E+O 4.7613+O 3.70E-3 4.88E+0 6.OOE+0
P819 -8.57E+0 4.7613+0 -3.70E-3 4.88E+0 2.OOE+O

___32___ -2.92E+2 1 .62E+2 -9.70E-2 1 .62E+2 1 .98E+2
P133 HPFPQ/N -6.18E+0 8.41E+2 -5.18E+1 8.46E+2 1.69E+2
P260 1______ .33E+l 1.81E+3 _ I.IIE+2 1.82E+3 3.15E+l
P52 MPFPH/N2 *1.48E+1' 1.02E+3 6.93E+l 1.0411+3 1.90E+2
P133 1.4811+1 1.02E+3 -6.93E+1 1.04E+3 1.69E+2
P260 -3.1 1+ 1.81E+3 1.17E+2 1.82E+3 3.15E+ I
P52 MC RI -4.29E+1 6.7lE+1 -I.99E+0 6.62E+1 I l.90E+2
P129 4.2911+1 6.71E+1 1.99E+0 6.62E+1 7.OOE+ I

P131.08E+2 1.69E+2 5.3+ 1.69E+2 1.69E+2
P52 MC R2 -1.98E+2 4.5811+1 -1.20E+0 4.3311+1 1.90E+2
P17 1.98E+2 4.58E+1 1.20E+0 4.33E+ I 1.40E+2

P139.09E+2 2.10B4.2 2.98EP 2.16E+2 1.69E+2I
P17 MC R3 -7.26E+0 2.43E+1 -4.94E-1 2.47E+1 1.40E+2
P436 7.26E+0 2.4311+1 4.94E-1 2.47E+1 5.OOE+l

P137.91E+2 2.63E+3 *j.15El 2.79E+3 1.69E+2
P52 MC R4 -2.05E+2 4.73E.1 I 1.68E+0 4.45E.I 1.90E+2I
P436 2.05E+2 4.73E+I 1.68E+O 4.45E+1 5.OOE+1

P139.03E+2 2.08E+2 8.33E+0 2.13E+2 1.69E+2
P59 PRE RI 1.40E+2 6.24E+I 1.68E+l 6.04E+l 1.90E+2
P58 -1.40E+2 6.24E+1 -1.68E+1 6.04E+1 1.40E+2

P1212____ -1.96E+2 8.71E.1 -2.27E+1 8.13E+l 8.50E+1
P59 PRE R2 7.02E+1 5.77E+1 1.22E+1 5.63E+ I 1.90E+2

P480 -7.02E+.1 5.77E+1 *1.22E+l 5.63E+1I 2.OOE+2

P209 HPOPR2 2.33E+lI 6.83E+1 -1.JOE+l 6.4811+1 1.20E+1
P90 -2.33E+I 6.83E+1 1.1OE+I 6.48E+1 1.40E+2

P1212___ 1.84E+l 5.,39E+I -8.75EO 5,15E+l 8.50E+1
P209 HPOP R3 2.90E+1 5.6111+1 -9.59E+O 5.33E+1 1.20E+1
P395 .2.90E+1 5.6111+1 9.59E+0 5.33E+ I 2.50E+1
IE1212...______ 2,51E+11 4,86E+1 -8.40E+0 4,66E+ I §.50E+ I

36



1*4 104 L.PFP OIN 0 205.3 2),
1.74'

1.72

1.64

400 405 410 415 42 425 430 435 440
Time (Solid=real, Dotted=preiction)

-500) Residual: StdDev=41 .6

060

4700

A.70400 405 410 415 420 425 430 435 440

Time

Figure 15. Familly Averaged Characteristic-Based Prediction

37



NAS 3-25883 I

Empirical Regression Equations
The principle advantages of linear models are that they can usually be solved by a single
matrix inversion and are relatively straightforward to derive. Unear regression models
have been successfully employed on the Advanced Propulsion Monitoring System
Program [3] to detect sensor failures in jet engines, linear models of dynamic systems

can display poor accuracy when applied over a wide range of dynamic response,
however during steady state operation of the SSME, linear models appear to work well in
tracking the relatively small amplitude of dynamic perturbations of the engine. A typical
SSME thrust profile is comprised of over 90% commanded steady state operation.

The procedure being followed for developing the regression equations is shown
in Figure 18. "Nominal" test data sets were partitioned into startup, shutdown, 65%,
100%,104% and 109% power levels. The SSME test summaries for the data sets on
hand at Aerojet were reviewed for known sensor failures (summarized in Table 4) and
excluded from the partitioned sets. The steady state data has been further screened to
isolate the data sets during LOX venting, repressurization, and propellant transfer
operations.

Using the partitioned data sets, the one to one correlations between all the U
sensors in the CADS data set have been determined using the Matlab software on the
GFE Sun workstation [16]. As expected excellent correlation (correlation coefficient n
greater than 0.95) was found between redundant sensor channels and some reasonable

correlation (correlation coefficient greater than 0.5) was found between over half of the
sensors. The sole fact of a high correlation coefficient is not sufficient to guarantee that
a true and significant physical correlation exists between signals. These sensors have

been down selected based on physical reasonableness determined by subjective
reasoning regarding physical interactions of the SSME. A summary of the correlation
coefficients is included in Appendix C.

From analysis of the correlation coefficients, 42 potential linear regression
relationships were identified and evaluated versus SSME data. Test were conducted I
similar to those described above for the characteristic equations. First, the coefficients
of the regression models were developed using "family" data derived from four different
tests at the same power level. Second, the coefficients were evaluated using a small
sampling of data from the beginning of the specific test. The results of these

experiments are summarized below. Typical test results are included in Appendix B.

I
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Two typical residuals (true signal minus the predicted) generated using "family" I
data are shown in Figure 19. In the first example the Heat Exchanger Exit Pressure (PID
34) is calculated as a function of the POGO Precharge Pressure, HPOPT Intermediate 3
Purge Pressure, and the HPOPT Secondary Seal Cavity Pressure. The equation was
derived from 109% power level data from test Al-619 and tested on 109% power level
data from test Al -620. The residual shows a slight offset from zero which is a common
feature of many of the equations tested. This offset is approximately 10% of the
documented SSME sigma for the parameter. The second example is for the POGO
Precharge Pressure (PID 221) as a function of how many other parameters which
includes its redundant channel. As might be expected, the inclusion of a redundant
channel produces very good correlations with little shift from zero. Equations such as
that in first example appear promising for providing sensor predictions considering no
redundant parameters were included. Equations which include redundant channels
such as the second example are heavily weighted by the redundant channel and will
work for data validation and reconstruction only when the sensor failure mode is such
that the loss of one sensor channel does not influence the other sensor channel (e.g.
poor cable connection). These results often show a fixed offset of the signal
representative of the variance of the particular engine to the family. This offset can not
be predicted a priori and may trigger false alarms in a simple fault tree logic isolation n
scheme.

The use of engine specific data to generate the regression equations yielded
more accurate models. The regression coefficients were derived using a 2 second (50
data points) time slice at the beginning of a given steady state portion of the test. Using
sampled data from the beginning of the steady state time slice virtually eliminates the
offset because the coefficients of the equations are calibrated for the particular engine.

Of the empirical equations evaluated, 28 equations yielded a standard deviation less
than that of each of the variables and significantly less than the family two sigma
database. Figure 20 shows two typical examples of the linear regression equations i
derived by sampling the power level.

Conclusions Of Parameter Estimation
Engine characteristic and empirical equations provide a good source of analytical 1

redundancy. Although only a small set of all potential relations have been evaluated, a
larger set covering most of the PIDs on the SSME should be derivable. Table 8 3
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summarizes the CADS PIDs (based on the sensor set selected for validation) for which i
characteristic and empirical equations have been developed. In addition, PIDs for which
hardware redundant channels are available are also indicated. In summary:

Characteristics and empirical equations computed from samples of data from the
engine being evaluated work better than family-averaged ones.
Sampled equations can be checked for reasonableness by comparison to a
database of family characteristics. I
The characteristic and empirical equations work better during steady state
operation than during engine transients. i

Fault Detection 3
Once a set of equations (empirical or characteristic) have been developed for the

sensors, fault detection is accomplished by comparing the true signal to the prediction.
If the resulting difference (the residual) exceeds a predefined threshold value then a
failure of the equation is declared. The cause of the equation failure may be a failure of
any of the sensors in the equation. Figure 21 illustrates how a residual could violate =
predefined thresholds, each of which represents a different confidence level as to the
existence of a failure. If the three threshold levels are taken to be the standard deviationi
of the residual computed from nominal data, then the probability of failure could be
assigned by assuming Gaussian statistics. Spikes in the data which tend to cross the i
threshold level for only a single cycle can be filtered from true violations of the threshold
limits by applying statistical tests.

Statistical hypothesis tests can be used to define detection limits for sensors
measuring well-behaved random data. The most common hypothesis tests are
concerned with the mean and standard deviation of a normal distribution. If the data of
interest is approximately normally distributed or if the data can be transformed into
approximately normal random variables, such hypothesis tests could be applied directly. i
Detection limits could be established either to one side or to both sides, using standard
methodology, and the probability of false alarm and the probability of detection could be
rigorously determined. The one-sided binomial confidence limit can be used with
sequences of observed exceedances of the detection limits to interpret the significance
of the exceedances. If the exceedances are interpreted as not being false alarms, the
sensor can be confidently classified as failed.
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In any hypothesis test, two types of errors are possible. The Type I error is I
rejecting the hypothesis when it is true. The Type II error is accepting the hypothesis
when it is false. If the null hypothesis is defined as the condition that the sensor and the I
relevant component are functioning properly, then the probability of the Type I error is
the probability of false alarm. This probability may be determined whether there is one
detection limit (one-sided test) or two detection limits (two-sided test). In most cases of
sensor failure detection, the two-sided limit test would be the correct one to use.
Similarly, the probability of the Type II error is the complement of the detection
probability.

For a particular application, as the probability of false alarm is decreased, the i
probability of detection is also decreased. The detection limits must therefore be set with
appropriately balanced values of these two probabilities. If the probability of false alarm i
cannot be made negligible, additional logic may be used to interpret the obsbved
exceedarces relative to the theoretical probability of false alarm. Appropriate
methodology for the interpretation of the observed exceedances is the one-sided
binomial confidence limit. !

Fault Isolation
Following the occurrence of a detected parameter fault (i.e. a failed equation), the

failed PID(s) must be isolated. An approach suitable for the SDV&SR system is based
on fault tree logic [3]. In this scheme, a system of equations for the SSME sensor is i
specified such as that shown in Figure 22. An incidence matrix which codes the
occurrence of independent and dependent parameters in the model is then constructed.
Rows of the incidence matrix correspond to the equations and each column of the matrix
represents a PID. The matrix is built by entering a one if a PID is present as an
independent variable in an equation or a zero if it is not as shown in Figure 22. Each
column of the incidence matrix represents a fault detection vector for its specific PID as
shown in Figure 22. If the threshold limits are set such that a failed PID causes a failure
of all equations in which it appears with equal probability, then single point failure
detection can be isolated by comparing the vector of failed equations to the each of the I
fault detection vectors for a match. The ability to isolate multi-point failures is dependent
on the specific structure of the incidence matrix (i.e. the system of equations).

5
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Step 1. Define Model: Example 8 equations (2 based on
hardware redundancy) 12 Parameters

Model #

I IIEX DS PR P1D 34 - fnc(40,59.210.221,234)

2 OPOV ACT POS CII A PID 40 - fnc(59,94.210)

3 FPOV ACT POS CH A PID 42 - fnc(40.59.94)

4 PBl' DIS Pit CilI A PID 59 - fnc(58,94,210)

5 PBP DIS TEMP CI! B PID 94 - fnc(40.42,59,210.234)

6 LPOP DIS PR ClI B PED 210 - fnc(34.90)

7 LPOP DIS Pit Ci IA PD 209 = fnc(210)

8 PBP DIS TEMP CII A PID 93 - fnc(94)

Figure 22. Fault Tree Logic for Isolating Sensor Failures
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2.2.4 Pattern Matching Techniques
Those sensors whose status cannot be effectively determined using linear or non-

linear regression techniques, or engine characteristic equations, can be analyzed using
pattern matching tools. Areas of potential application include start, shutdown, and
power level transients, as well as thermal drifts and other highly non-linear phenomena.
Pattern clustering appears to be a good candidate for the reconstruction of data which
cannot be accurately reconstructed by using regression or engine characteristic
modeling. Pattern matching techniques fall into two basic categories: pattern matching
algorithms and artificial neural networks. Even though the mechanics of the two
methods are different, the resultant output is similar for both. Neural networks are useful

for both sensor validation and data reconstruction purposes and have been
demonstrated with SSME data [17].

The two primary types of pattern matching algorithms are categorized as
decision-theoretic and semantic. For this study, only the decision-theoretic algorithms
were investigated. This family of algorithms operates roughly as follows: An exemplar

pattern of interest is input to the algorithm, along with a sample test pattern. The
algorithm reduces the two patterns into their respective vector components and
computes the matching score between the two. The matching score is a statistical
measure of the relative likeness between the vectors. This technique can be used to
validate sensors in the following manner: patterns of data, such as the startup transient

of the MCC pressure, which are known to be good, can be input into the algorithm as
sample exemplar patterns. As more samples are used to train the algorithm, the
algorithm is increased. Once the algorithm has "learned" the pattern, suspect data (data
where no validity determination has been made), can be input into the algorithm. The
matching score is then computed, and if it falls below a predetermined threshold, the

sensor (in this case PID 130) is classified as failed. The most well known of the decision-
theoretic algorithms is the K-nearest neighbor classifier [18, 19, 20]. This algorithm
works on the principal that the probability of any particular point being part of the pattern

of interest is directly proportional to a specified number of points nearby (K), and
inversely proportional to the sample space volume containing k number of points.

Artificial neural networks appear to be good candidates for both sensor validation
and data reconstruction. Neural networks are a highly parallel computational
architecture which is roughly modeled on the physical structure of the brain. The basic
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building blocks of all artificial neural nets are layers of nodes (neurons) which have I
weighted connections to other nodes. A number of specialized architectures, in which
the number and configuration of inputs, nodes, layers, connections, and outputs are

varied, have been developed for a variety of specialized purposes [21, 22, 23].

Connection weights can either be variable or fixed, depending on which particular

architecture is selected. Nodes in a particular layer can be connected to specific nodes
in the adjacent layers, or they can be connected to all of the nodes in adjacent layers

(fully connected). The first layer of nodes in any net is called the input layer, the last

layer is called the output layer, and all intermediate layers are called hidden layers. In the

case of a two layer network, one input is presented to each of the nodes in the first layer.

Each of the inputs is then output to a node in the following layer as the product of the

original input value and the appropriate connection weight. These products are then

combined algorithmically by the second node (known as a processing unit) and that

output is compared to a target value. The difference of the two is the residual error. As

in algorithmic pattern matching, if the residual error is within the required threshold, the

computation is complete and the final output, in this case a sensor signal, is considered

good. If not the connection weights are modified algorithmically, and the neural net

process is repeated, and continues until an acceptable residual error level has been

reached.

For the purposes of pattern recognition and data reconstruction, the best neural

net architecture appears to be the multi-layer perceptron [22]. This architecture is better

known as the back-error propagation or simply the back propagation network. This
name refers to the algorithm which is used to reset the connection weights after each

complete pass through the network. Figure 23 shows a flowchart representation of this

architecture. The perceptron has variable connection weights, is fully connected

throughout, and uses supervised learning. For the complex pattern matching and data
reconstruction tasks on this program, at least four layers of nodes (two hidden layers)

are desirable. The number of nodes in the hidden layers should be three times the

number of input nodes, so *,at sufficient pattern definition is achieved [22]. This

approach is identical to that taken by Guo and Nurre, who were successfully able to I
diagnose a simulated SSME sensor failure and reconstruct the lost data [17].

Another architecture which appears to have promise for pattern classification is

known as competitive learning [21]. This architecture is very similar to the multi-layer
perceptron, except that the former uses unsupervised learning, and only the weight of
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the highest valued or "winning" output node is modified during the recursive phase of the
process. This process continues until the value of the "winning" node no longer
changes.

Due to the complexity of both the neural network and pattern matching/pattern
clustering approaches to sensor validation and reconstruction, designing and
implementing either system from scratch is relatively resource intensive. There are
several commercial software products, representing both pattern matching paradigms,
which are currently available and listed in Appendix D. These packages contain
networks or algorithms which can perform pattern classification tasks.

3.3 Knowledge Fusion Approaches
As shown in the previous section, there are several possible sources of

information about a PID's failure (Table 9 summarizes the sources of information that
have been investigated so far). Given all of these pieces of information about a sensor,
which may be conflicting and have varying degrees of uncertainty associated with them,
the sensor validation system must be able to make (and justify) a decision about the
status of each sensor. This is the problem addressed by a sub-discipline of Artificial
Intelligence referred to as information fusion (also known as evidential reasoning or
reasoning with uncertainty ).

Information fusion involves the combination of evidence from several sources into
a single, consistent model. Uncertainties in the sources of evidence (i.e., inaccuracies in
the sensors or uncertainties in the fault detection algorithms themselves) are explicitly
modeled and accounted for. There is a spectrum of information fusion techniques
available, ranging from computationally efficient but unsound approaches, to those
guaranteeing semantically correct results but having a high computational overhead and
implementation complexity associated with them. In addition, for any given technique

chosen there are typically many algorithms available for implementation. The following
section will describe and evaluate the four most popular techniques currently used for
information fusion, and evaluate which is the most appropriate for use in the sensor
validation system.

Survey of Techniques
Four approaches to information fusion were evaluated for the sensor validation

system. These approaches were selected based on their frequency of use in fielded
systems and their mention in the literature. These measures of popularity indicate the
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degree of confidence held in the techniques by the Artificial Intelligence community.
These techniques have also been in use long enough to ensure their maturity: The
MYCIN approach was developed in the 1970's; Dempster-Shafer theory was developed
in the 1970's and has seen wide use and mention in the literature in the 1980's; and the
Bayesian Belief Network approach was developed in the 1980's, although its foundation
can be traced to the roots of probably theoiy (1500's).

Binary Logic
Binary Logic represents the most common approach to information fusion, and involves
decision-making based on hard-coded rules, such as those in NEXPERT. Examples of
such rules are:

Voting redundant sensors.
Redlining (thresholding).

Fixed prioritization of sources of evidence. For example: "If two physically
redundant sensors differ by more than a threshold amount, then suspect the one
with lower variance."
Fault tree isolation logic.

Binary logic does not address uncertainties in the sensors or the sources of
evidence. More importantly, it is highly susceptible to making wrong decisions (false
alarms or undetected failures) since exhaustive enumeration of all possible exceptions to
rules is extremely difficult, if not impossible1 . The major advantages to binary logic are its
computational efficiency and ease of implementation (once the rules have been defined).

MYCIN Certainty Factors
Several attempts have been made to add the capability to reason with uncertainty

to rule-based systems. One example of such an approach is MYCIN certainty factors2

MYCIN is a rule-based medical diagnostic system. In order to address uncertainties
both in the observation of symptoms and in the diagnostic rules themselves, the
developers of MYCIN devised an ad-hoc technique for representing and reasoning with
uncertainty which could be layered onto their rule-based approach. This approach can
be summarized as follows:
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Table 9. Sources of Information about Sensor Failures

A-Priori Knowledge about Physical Redundancy
Likelihood of Failures Alternate Sensors
Reliability of Sensor Class
Sensor Failure History Known Failure Mode Analysis
Sensor Time in Service "Universal" Failure Modes
Pre- and Post- Test Calibration Hard Open Circuit

Intermittent Open Circuit
Reasonableness Checks Short Circuit / Shutdown
Red, Yellow, and "Reasonable" Lines Spikes
Rate of Change
Standard Deviation Sped and Flow SensorsAliasingI

Signal Analysis 

I
Moving Average Pressure Sensors
Time Series Thermal Drift

Overshoot
Loss of Reference Vacuum

Analytical Redundancy
Empirical Correlation Models Temperature Sensors
Engine Characteristic Models Thermal Expansion

I
I

I
I

58 I



NM 3-25883

Each proposition (fact) in the knowledge base has a certainty factor associated
with it, which is a real number between -1 (indicating that the fact is definitely

false) to + 1 (indicating that the fact is definitely true).
Each rule has an attenuation , a real number between 0 and 1, indicating the
uncertainty in the rule (a value of 1 indicates that if the rule's antecedents are
known with absolute certainty, then the rule's consequents can be concluded with
absolute certainty).
Given antecedents a1, a2, , an, and a consequent c for a rule:

Certainty[c] = Minimum(Certainty[al, Certainty[a2,... Certainty[an ])
Attenuation

If two rules assert certainty factors for the same proposition, the resulting certainty
factor is found by:

x + y-xy fx,y> 0
(x + y)/(1 - Minimum(x,y)) if xy different sign
x + y + xy ifx,y < 0

Where x and y are the certainty factors assigned by the two rules.

This approach is better than binary logic in that it attempts to deal with uncertainty
in an explicit way, and provides a means for combining multiple sources of evidence. As
with binary logic, this approach is also computationally efficient and straightforward to
implement (it can easily be added onto a NEXPERT rule base). However, since the
approach is based on ad-hoc formulas there are cases in which it will produce non-
intuitive results.

One case in which it will give incorrect results is when the sources of evidence
contributing to a proposition are correlated. An example of this from the Chernobyl
disaster is shown in Figure 24 (the example is due to Henrion3 ). Pearl says about this
example, "Multiple, independent sources of evidence would normally increase the
credibility of the hypothesis (Thousands dead ), but the discovery that these sources
have a common origin should reduce the credibility. Extensional systems are too local
to recognize the common origin of the information, and they would update the credibility

of the hypothesis as if it were supported by three independent sources.'4

Dempster-Shafer Theory
The Dempster-Shafer theory of evidential reasoning 5 has experienced a wide
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popularity in the Artificial Intelligence community in the last 10 years. In contrast with I
approaches such as MYCIN certainty factors, it is a mathematically sound approach.

The Dempster-Shafer formalism maintains a body of evidence about a set of
mutually exclusive hypotheses (in sensor validation, the hypotheses would be of the
form PIDi-Failed ). In this theory, a source of information can assign probabilities to
disjuncts of hypotheses. For example, if evaluation of the engine characteristic

LPOPH/N2 = (P209-P860)/P30"2 I

at a particular time point indicates that the characteristic is anomalous (e.g., the residual 3
is greater than 3 sigma), the following probability assignment could be made: !I

Confirm(fp209,p860,p30J, 0.9)

This assignment indicates that either P209 or P860 or P30 has failed with a 0.9
probability. A formal method, Dempster's Rule of Combination, exists to combine two
statistically independent bodies of evidence formed by statements of the form shown
above. Once all sources of evidence have been combined, the Belief and Plausibility of
any disjunction of hypotheses can be found. U

Belief in a hypothesis is the probability that a logical proof for the hypothesis
exists (i.e. if evidence assignments are interpreted as constraints, this is the
probability that the constraints allow the hypothesis to be deduced). This can
also be interpreted as the degree to which the evidence supports the proposition.

Plausibility of a hypothesis is the probability that it is compatible with the evidence

(i.e. the probability that it cannot be disproved and is therefore possible). Thus,
this is the degree to which the evidence fails to refute the proposition.

Plausibility(H) = 1 - Belief(H)

Thus, once all sources of information about a sensor have been combined, the Belief in
each sensor's failure hypothesis could be examined and acted upon if over some
threshold.
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Dempster-Shafer Theory has several disadvantages when applied to the sensor I
validation information fusion problem: I

The theory assumes that all sources of evidence are statistically independent (this
is not true if any PIDs are used in more than one test). 3

The theory assumes that exactly ong of its hypotheses is true; thus, it will not
detect multiple-point failures. (However, if the method is used for every time slice
of data this should not be a problem, since the probability of having more than
one failure at a given instance is extremely small.)
Each application of Dempster's rule can be computationally very expensive. I
Direct implementation is exponential in the number of hypotheses, although
approximate solutions have been developed.
Finally, Dempster-Shafer theory is good for reasoning about problems in which

constraints are stated explicitly, such as in design or planning, since the objects
that are reasoned over are constraints among its hypotheses.

Bayesian Belief Networks i
Bayesian probability theory, like the Dempster-Shafer theory described above, is

mathematically sound. However, prior to the development of graphical representations I
and efficient network solution algorithms, its application to non-trivial problems (with
more than a few dozen random variables) was extremely awkward if not intractable. i

Graphical representations of joint probability distributions provide a very intuitive
knowledge representation format, and the Bayesian network formalism allows the
requisite probabilities to be specified in a very concise and painless manner.

A Bayesian network consists of nodes which represent discrete-valued random

variables. Examples of such nodes in the sensor validation system are shown in Figure
25. The node/random variable-P209-represents the current state of PID 209, and can

be in one of five mutually exclusive states: OK, HardOpen, IntermittentOpen, Drift, or
Bias. Associated with this node is a probability distribution which describes the
probability of the node being in each of its possible states given all available information. 3
The LPOPH/N2 node represents the outcome of the engine characteristic test:

LPOPH/N2 = (P209-P860)/P30^2 i

6
62I

I



NAS 3-25883

This is computed from a time slice of data and compared to a sampled baseline
characteristic. The states for this node represent the residual from comparison, and
thus the outcome of the test.

Directed arcs lines between nodes in a Bayesian Belief Network represent
influences. In particular, an arc from node A to node B indicates that knowledge of node
A's state can change the probability distribution for node B. Figure 26 shows the three
arcs influencing node LPOPH/N2, namely those coming from the three PIDs involved in
the test (a change in the status of any of the PIDs involved can change the outcome of
the test). The nodes and arcs in a Belief Network must form a Directed Acyclic Graph
(DAG), that is, the nodes can be connected in any manner as long as you cannot start at
a node and get back to the same node by following directed arcs through the network.

Once the topology of a network has been defined, two types of probabilities must
be specified to complete the network. First, all nodes which do not have any influencing
arcs (i.e., no arcs coming into them) must have default probability distributions for their
states defined (P209 in Figure 27 shows an example of this). In the Belief Networks used
for sensor validation, these nodes typically represent random variables specifying the
status of each PID. The default probability distributions would be obtained from
historical reliability data for each sensor (e.g., PID xyz has exhibited a 0.99 reliability over
the last 30 tests with a 0.005 probability of failing hard open circuit and a 0.005
probability of failing by drift), coupled with time in service, and pre- and post-test
calibration.

Second, every node which has influencing arcs must have probability distributions
conditioned on the states of their influencing nodes specified (see LPOPH/N2 in Figure
27). In the Belief Networks used for sensor validation, these nodes typically represent
random variables specifying the outcomes of diagnostic test. The probabilities

distributions can be obtained analytically by analysis of each test used.
A fully specified Belief Network can be used to answer queries in the following

manner:

1."Observables" are instantiated (in the example above, this consists setting the state
of the LPOPH/N2 node to reflect the test outcome).

2. A network update algorithm is run.6 ,7 ,8

3. The probability distributions of nodes of interest are examined (in the example
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above, this consists of examining the distributions for P209, P860, and P30 to see if I
the probability of any fault state exceeds a threshold).

The major advantage of Bayesian Belief Networks is that they are the most
semantically correct way to perform information fusion. For analysis problems such as
diagnosis, Bayesian probability theory is better suited than the Dempster-Shafer
approach, since the objects that it reasons over are probabilistic models (there are no
explicit constraints known a-priori).9  However, the Belief Network solution algorithms
can be complex to implement and computationally expensive.

Evaluation of Techniques
Table 10 shows the results of a trade study on the four techniques discussed

above for use in sensor validation information fusion. In the trade, the "soundness"
criterion was given the highest weighting because the whole purpose of information
fusion is to give the best possible evaluation of all sources of information. The "Ease of
Implementation" criterion includes not only implementation of the fusion algorithm, but 3
the encoding of all requisite knowledge to perform the sensor validation information
fusion task (i.e., specification of probabilities, certainty factors, logic rules, etc.). Based
on this trade, Bayesian Belief Networks are the recommended approach to information i
fusion for sensor validation.

Application to Sensor Data Validation
Figure 28. shows how all of the information available about the state of P209

(LPOP discharge pressure) might be integrated using Belief Networks. Given the
research performed in Phase I, it is known that P209 can be evaluated by two 3
characteristic tests (LPOPH/N2, HPOPR2), by an empirical test (relating P209 to P211
and P91), by range tests (e.g., 2sigma bands), by pattern-matching techniques which

look for specific failure modes such as spikes and drifts, and by comparison to P210
(channel B). In addition, information about P209's failure history, time in service, pre-
an1 post-test calibration, and the reliability of the transducers used to measure LPOP •
discharge pressure can be combined into an initial probability distribution for P209 and
combined with the evidence gathered for each time slice of the test data analyzed. 3

The specification of the Belief Networks needed should be very straightforward. A
preliminary analysis of the networks required indicates that most of the probabilities, and 3
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p(LPOPHIN2 State I P209 State, P860 State, P30 State) ____

p(Residuak<3sigmaIP208=OK,P90-OK,PI 212-OK) 0.997
p(Residual :3sigmaIP2OB.-OK,P90=OK,P1 21 2-OK) 0.003
p(Residual<3sigmaj P208-OK, P90-OK, P121 2-Failed) 0.500
p( Residual >3sigmaj P208=OK, P90-OK, P121 2-Fadled) 0.500
p(Residual<3sigmaIP208-OK,P90-Faited,P1 21 2=OK) 0.100
p( Residual -3sigmal P208=0K, P90-Failed, P1212.0K) 0.900
p(Residuak<3sigmaIP208=OK,P90-Failed,P1 21 2-Failed) 0.100
p(Resedual *3sigmaIP2O8=OK,P90-Failed, P1 21 2-Failed) 0.900

Etc...

P209 Default
LPOPWNA2P209States: Probability

P0TEST I STATUS OK 0.99
,TAUSFailed 0.01

TATUSS

Figure 27. Example Belief Network Probability Specification
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possibly the network topology itself, can be automatically compiled from descriptions of I
the various sources of information (e.g., engine characteristic and empirical PID

relations). I

I
I

I
I
I
I
I
I
I
I
I
I
I
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4.0 System Software Specification
4.1 Scope

4.1.1 System Objective
The major objective of the Sensoi Validation system is to automatically detect

sensor malfunctions in the SSME test data, and to reconstruct the data for any
malfunctioned sensors using alternate sources of information. The system will run in two
major stages; an initial batch processing mode, followed by an interactive post-
processing mode (see Figure 30). In the batch mode, the sensor data from the SSME
test (in engineering units) is thoroughly analyzed by the sensor validation system, with
PID failures flagged and PID value reconstructions automatically run. The purpose of the
interactive mode is to allow analysts to quickly understand the results of the batch mode
processing, and either confirm or override the failure and reconstruction decisions made
by the sensor validation system.

Batch Processing Mode
In the batch processing mode the SSME data is analyzed and acted on according

to three user-specified thresholds:

Report threshold - the system will write a report whenever the estimated
probability of any sensor failing crosses this threshold (in either direction). The
report will be produced in two parts: a brief summary stating which PID(s) changed
state and when, and a detailed report describing how the system arrived at the

estii nated probability.
Reconstruction threshold - the system will reconstruct the value for a sensor using

alternate sources of information whenever its probability of failure exceeds this
threshold. If several viable methods for reconstruction exist, the system will pick the
method with the highest probability of being correct (based on the failure
probabilities of any other sensors involved in the reconstruction and the accuracy of
the method).
Failure threshold-when a sensor's probability of failure exceeds this threshold, the

system will assume that its value cannot be used to cross-check other sensors or in
reconstruction of other sensor values.
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Although users are free to set the thresholds at any values, it is expected that
typically the following relative settings will be used:

Report < Reconstruction < Failure

Using these settings, the system would typically generate reports whenever a
sensor exhibits any questionable behavior. Additionally, reconstructed values will be
produced in cases when the system does not conclude that the sensor has failed, but
simply derives an unusually high probability of failure. Thus, the user still has pre-
computed reconstructed values to use in case he or she overrides the system's
judgement about the failure status of a sensor.

Batch mode processing is expected to take place immediately following an SSME
test, with results available within an hour for use by the rest of the Life Prediction System
and for use in Interactive mode analysis. Thus, this processing will not exceed one hour
in duration on a Sun SPARCStation.

In batch mode, all sources of available information will be analyzed and fused to

reach the best possible decision about the status of a sensor. The tests incorporated
into the initial version of the sensor validation system will include:

Empirical models
Characteristic models
Red-line test
Sensor class reliability
Sensor failure history
Some form of pattern-matching
Comparison with redundant channels

The system will be constructed in such a way so that tests can be added or
modified with minimum effort. Bayesian Belief Networks will be used as the approach to
information fusion. An approach to specifying the networks will be developed which
minimizes the effort required to define the network(s) required and the associated
probabilities.

In addition to flagging sensor failurgs and performing reconstructions, the batch
mode software will determine the best source of information to use for each physical

73



NAS 3-25883 I

measurement (e.g., channel A, channel B, reconstruction method 1, reconstruction I
method 2, family-averaged historical value, etc.). This designation can then be used by

other modules in the SSME Life Prediction system (e.g., expert diagnostic modules) so

that they only need to look at a single source of data for each measurement and not

concern themselves with evaluating the different possible sources of information. Thus,

this provides a form of data reduction for the entire Life Prediction system.

Interactive Post-Processing Mode n

The Interactive post-processing mode is intended to provide an analyst with an

environment in which he or she can quickly understand the conclusions reached by the

system during its batch processing, and either confirm or override the decisions made

by the system. The analyst will also be able to display arbitrary PID value vs. time plots,

and run any available reconstruction algorithm. The interactive software will make

maximum use of a mouse-driven, color, graphical user interface to convey the sensor

validation system's results as efficiently as possible, and to minimize the analysts'

learning time.

The post-processing software will have three main displays (in addition to a "main

menu" for specifying test numbers, top-level operations, etc.). The first display will show

a color plant diagram of the SSME with icons representing all CADS PIDs (see Figure

30). Sensors which had been flagged as failed during batch processing (according to

the failure threshold) will be highlighted on the display. This display gives the analyst a

quick, global view of problems detected by the sensor validation system. In addition,

the highlighting can reflect a single instant in time during the test, and the analyst will be

able to move a scrollbar along thie bottom of the display to advance forward or backward

in time to get a quick feel for the chronology of events during the test. If a PID icon is

clicked on with the mouse, a pop-up window will appear showing a brief summary of the

PID's status. Further, if this window is clicked on a justification display will appear to give

a complete description of the sensor validation system's evaluation of that PID at the

indicated time.
The justification display is the second main display in the interactive system (see

Figure 31). When requested by the analyst, a display will appear showing a verbal

description of the evaluation of a PID at a specific time, and any supporting graphics

(e.g., plots) will also be displayed.

I
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The third main display in the interactive system is the "PID Matrix" (see Figure 32).
This display shows a concise summary of the system's conclusions and

recommendations, and allows the analyst to override any of the entries. Each PID is

displayed on a timeline, with the color of the display indicating the status of the PID (e.g.,

green for OK, red for failed). Although the initial display represents the validation

system's batch mode conclusions, the user can click the mouse on any segment of the

display and modify the status of the sensor. Additionally, if the sensor is declared failed,

the user can specify the reconstruction method used and whether a UCR should be

generated or not.

Once the analyst OKs the PID Matrix, the sensor validation system automatically

assembles a test data file with all selected reconstructions, generates all requested

UCRs, and generates a final report. The report includes the justifications for all failed

sensors (including text and graphics), and is editable by the analyst using SunWrite.

Global Objectives
In addition to the objectives mentioned above, the following objectives apply:

Although the Sensor Validation system will eventually have to interact with the

Session Manager to obtain its data and to interface with the user, it will initially be

designed as a stand-alone system since it is the first module in the SSME Life

Prediction system planned to be completed. However, a clear migration path

from standalone to embedded processing will be maintained.

The sensor validation system will be designed so as to minimize the effort

required to modify engine data (e.g., PID lists, sensor specifications, sampling

rates, etc.).

The sensor validation system will be kept as engine-generic as possible so as to

minimize effort in porting the system to a different engine (e.g., the SBE).

4.1.2 Hardware

The sensor validation system will be implemented on a Sun SPARCStation.

4.1.3 Software

The sensor validation system will be implemented using the following software

languages, tools, and environment:

Operating System: Unix
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Procedural Language: C I
Expert System Shell: NEXPERT Object
Windowing/Graphics System: Motif or Dataviews 3
CAE Package: PV-WAVE

4.1.4. Human Interface l
The human interface to the system will provide a graphical, mixed-initiative

interface to the set of tools that the sensor validation system provides. Point-and-click
functionality will be used throughout (including the use of pop-up menus) to initiate all
functions so that the analyst does not need to remember commands and their
parameters. Different activities (e.g., plant display, justification, default modification, etc.)
will take place in separate windows so that the user can visually cross-reference
infor, 'ation when desired. A mixed-initiative interface will be used so that at any time

either the system can lead the user (e.g., with a suggested action or a query) or the user
can direct the system (e.g., with a new command or volunteered information).

The display format of data (e.g., test data plots) will adhere as closely as possible
to the formats used in current hardcopies to minimize the users' effort in orienting to the
system.

The user will be able to index PIDs either by PID number, by Rocketdyne number,
by label (e.g., "MCC COOLANT DISCH PRESS CH Al"), or by clicking on the
appropriate plant display icon. I

Stylistically, the system will adhere to the OPEN LOOK Graphical User Interface
specification through the use of Sun's OpenWindows window system.

4.1.5. Major Software Functions
Batch ModI

Import and partition Engine Test Data. The system will import test data from an

Ineres data base and partition it into steady-state and transient intervals.

Import PID Reliability and Failure History. The system will import the failure history I
for all PIDs and the reliability figures for all PIDs from an Ingres database, and
integrate this information into its decision about the status of PIDs. 3

I
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Import Family-Averaged Models. The system will import all summarized
characteristic and empirical (regression equation) information about previous
tests from an Ingres database, and integrate this information into its decision

about the status of PIDs. This information includes:
- True Engine Characteristics.
- Empirical model constants.
- PID value means and standard deviations as a function of power level (for

computing yellow and red-lines, and as a "last resort" method for reconstruction).

Assess sensor status. The system will determine the probability of each PID's
likelihood of failure at each time point in the test data.

Report sensor failures. Whenever a sensor's probability of failure exceeds a user-
specified Report Threshold, a brief statement will be output to a Batch Report file,
and a detailed justification of the probability assessment will be output to a
Justification Data file. The Justification Data file can not only contain textual
descriptions, but specifications for generating supporting plots as well.

Reconstruct sensor values. Whenever a sensor's probability of failure exceeds a
user-specified Reconstruction Threshold, the system will reconstruct the sensor's
value from that time point until the end of the test using alternate sources of
information. There are different thresholds for reconstruction and failure to

support efficient interactive processing, so that an analyst can use reconstructed
data for a "borderline" sensor, even though the system did not declare it as failed.
If several viable reconstruction methods exist, the system will pick the one with the
highest probability of being correct (based on the failure probabilities of any other
sensors involved in the reconstruction and the accuracy of the method). Once
reconstruction has started, the method used may be changed dynamically as the
probability of other sensors (i.e., those used in the reconstruction method)

change. All reconstructed data will be output to an Ingres database.

Conclude sensor failure. Whenever a sensor's probability of failure exceeds a
user-specified Failure Threshold, the system will not use the sensor's value in any
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further reconstructions or cross-checks for other sensors. In addition, a brief
statement describing the failure will be output to the Batch Report for use in the
Interactive Mode.

Generate Engine-Specific Models. Characteristics (as described in the Import
Family Characteristics function above), empirical model constants, and mean and
2-sigma values, computed and averaged per power level for the engine under test

will be written to an Engine Characteristics Ingres database.

Select best source of information. For each physical measurement (e.g., PC,
LPFP DISCH PRESS, etc.), the system will determine the best source of
information at every time point based on its sensor analyses. The sources may

include not only redundant channels, but any available reconstruction methods.
This information will be output to the Batch Report file. 3
Generate validated data set. When this option is selected at the start of the batch
mode processing, the system will assemble a final validated data set, integrating
real and reconstructed values accrd',,g to the user-specified Failure threshold
(i.e., whenever the probability of a sensor's failure exceeds this threshold it is 3
replaced with the best reconstruction method available).

Interactive Mode I
Display PID Matrix. The system will display a graphical matrix indicating the

assessed status of each PID at each time point in the test (e.g., a green bar will
indicate that the PID is functioning normally, while a red bar will indicate a failure).
When an entry is clicked on with the mouse, a popup window will appear showing
a brief summary of the PIDs status and, if a failure is indicated, the reconstruction
method used and whether a UCR will be issued or not (see Figure 32). The=
matrix will be initialized from data in the Batch Report, but the user can modify any
of the entries via the popup window. If the user changes a PID's status, alli
ramifications of this must be determined by the system (in particular, if the user
declares a PID as failed, then any reconstructions based on that PID must be i
invalidated). In addition, the popup window will have a "Justify" button which will

8
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cause a justification for the system's assessment to be displayed if it is clicked on
(see Display Justification below).

Display plant summary. The system will display a picture of the SSME plant
diagram with all PIDs depicted by icons which indicate assessed status (e.g., a

red icon will indicate a sensor failure, while green will indicate that the sensor is

OK). The plant display will have two modes: summary and chronological. In

summary mode the maximum failure probabilities over the duration of the test will

be used for the icon display (i.e., the display indicates the worst-case status of all
PIDs over the duration of the test). In chronological mode, the user will be able to

step forward or backward through the test time by moving a scrollbar along the

bottom of the plant display (see Figure 31) with the icons updated so as to
display their status at that point in the test. If an icon is clicked on, a summary of
its status over the duration of the test will appear in a pop-up window. If one the

entries in this summary is clicked on, a justification for the system's assessment is
displayed (see Display Justification below). The plant summary is generated from
information in the PID Matrix.

Display Justification. The system will display the justification data for a given PID

assessment when requested by the user. The justification information will be
imported from the Justification Data file generated during batch mode. Text and

supporting graphics (i.e., plots) will be displayed in separate windows.

Plot Generation. The system will plot any PID value, reconstructed PID value, or

any combination of these over any requested time interval. If a reconstruction is
requested which was not run during batch mode, the reconstruction is run
immediately using information from the engine test data, and the family and

engine characteristics databases.

Authorization. Once the user is satisfied that the PID Matrix is correct, he or she

can authorize the system to complete its processing. This includes the following

functions:
The system generates all UCRs specified in the PID Matrix.
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- The system updates the Failure History database according to the sensor failures I
indicated in the PID Matrix.

- The system updates the Family Characteristics database using the information in 3
the Engine Characteristics database output in batch mode, and using information
in the PID Matrix to determine what should not be updated (due to sensor 3
failures).

- A final report will be generated. This includes a brief textual summary describing

all PID failures, followed by all justification information for each PID failure. The
report will be output in SunWrite format so that it can be edited by the user.

4.2. Reference Documents
IR&D Proposal AMP 91-03: Integrated Controls & Health Monitoring, Aerojet
NEXPERT Object User's Manuals (vol I and II). Neuron Data, Inc.

OpenWindows 1.0 User's Guide, Sun Microsystems
XView 1.0 Reference Manual: Summary of the XView API, Sun Microsystems
SunWrite 1.1 User's Guide, Sun Microsystems

SunOS Reference Manual (vol 1, 11, and Ill), Sun Microsystems
PV-WAVE User's Manual 3
Programming Language C, X3.159-1989, ANSI I
4.3. Preliminary Design Description

4.3.1. Batch Mode I

Data Flow
Figure 33 shows the top-level, formal data flow diagram for the batch mode

processing modules in the sensor validation system. Figure 34 shows the next level data

flow diagram for the Sensor Failure Detection module. The software modules in these I
diagrams are described next.

Software Modules
Steady-State/Transient Partitioning. The test data will be partitioned into steady- i
state and transient intervals.
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Model Sampling. Data samples required by the characteristic and empirical
models (and any other models requiring engine-specific tuning for other tests) will
be taken from each data set partition.

Sensor Failure Detection. The probability of failure for each PID at each time point
will be assessed based on the fusion of all available information and tests and
output to the PID Status table. For each crossing of the Report Threshold, a
justification will also be output to the Justification Data file.

Characteristic Evaluator. The characteristics for the engine under test (including
true engine characteristics, and PID means and standard deviations) are
computed and output to the Engine Characteristics database.

Reconstruction. For each crossing of the Reconstruction Threshold, a
reconstructed sensor value will be generated and output to the Batch Mode
Reconstructed Data database.

Report Generation. The contents of the PID Status table will be output to the

Batch Report file.

In-Family Test. Each engine-specific characteristic sampled by the Model
Sampling n odule will be compared with family values in the Family Characteristics
database. If the engine-specific characteristic is "out-of-family" then that
characteristic will not be used for further sensor assessment, and information
about the out-of-family condition will be passed to the Information Fusion
module.

Time-Slice Partitioning. All PID values for a given test sampling time will be
extracted for use by the various assessment tests.

Characteristic Tests, Empirical Tests. All viable characteristics and empirical
models will be evaluated and compared to their corresponding sampled baseline
values. Information about the degree of disagreement (i.e., the size of the
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residual) will be passed to the Information Fusion module. Whenever the I
probability of a sensor's failure exceeds the Failure Threshold (based on the PID
status table), tests involving that sensor's values will no longer be used.

Pattern Matching. Any pattern-matching techniques will be run, with the results

passed to the Information Fusion module.

Information Fusion. All sources of information about the status of each PID at I
each time point in the test will be fused together using the technique of Bayesian

Belief Networks. The resulting probability of failure for each PID will be compared I
to the Reporting Threshold and, if exceeded, justification data based on the tests

involved in the assessment and the Bayesian analysis will be written to the

Justification Data file. The best source of information to use for each physical

measurement, and the best reconstruction method to use for each PID are also

determined.

4.3.2. Interactive Mode I

Data Flow
Figure 35 shows the formal data flow diagram for the interactive mode processing I

modules in the sensor validation system. The software modules in this diagram are

described next.

Software Modules
Plant Browser. Performs the "Display Plant Summary" function described in

section lU1.1.e. 3
Justification Browser. Performs the "Display Justification" function described in

section III. 1.e.

PID Matrix Authorizer. Performs the "Display PID Matrix" function described in

section i.e.

Plot Generator. Performs the "Plot Generation" function described in section 1 .e.
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Family Update. Some or all of the characteristics for the engine under test will be I
added to the Family Characteristics database, once the PID Matrix has been
authorized. I

Reconstruction. PID values not reconstructed during batch mode may be

generated in real time if requested by the user.

Failure History Update. The PID Reliability & Failure History database will be

updated with the failed PIDs in the PID Matrix, once it has been authorized.

UCR Generator. UCRs will be generated as specified in the PID Matrix, once it
has been authorized. I

Validated Test Set Generator. A final engine test data set will be assembled from
real and reconstructed PID values according to the PID Matrix, once it has been

authorized.

Report Generator. A final report will be generated, consisting of a brief summary

of all failed PIDs, followed by a justification for each failure assessment. The
report is based on the PID Matrix and the Justification Data file, and is generated

once the PID Matrix has been authorized. I

4.3.3 External File Structure
Engine Test Data Set - Ingres database containing the raw data from the test

under analysis, with all values converted into engineering units.

PID Reliability & Failure History - Ingres database containing the reliability
(manufacturer's statement) of each sensor, in addition to the failure history for
each particular PID.I

Family-Averaged Models - Ingres database containing the characteristics,

summarized at each power level, for all engines.

I
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Engine Models - Ingres database containing the characteristics, summarized at
each power level, for the engine under test.

Batch Mode Reconstructed Data - Ingres database containing all reconstructed
PID values (same as Engine Test Data Set, except that the start and stop times
and reconstruction method used are also recorded).

Justification Data -An ASCII file containing text and plot generation information for
each PID whose probability of failure exceeded the Report Threshold.

Batch Report - ASCII text file, formatted for ease of reading into the interactive
mode system, but also sufficiently annotated to make it usable as a hardcopy
report.

Validated Test Data - Ingres database; same format as Engine Test Data Set.

Thresholds - Text file containing the report, reconstruction, and failure threshold
values.

4.4 Test Provisions
The sensor assessment capabilities of the system will be evaluated by the

following methods:
Review of heuristics and strategies with experts.
Running several test cases through the system, using real or simulated failures as
necessary to obtain broad test coverage.

Running two new test cases provided by NASA LeRC through the system.
in the system will be evaluated during

In addition, the overall capabilities of the system, including the interactive mode
user interface, will be evaluated during demonstrations (as scheduled in section IV) to
members of NASA LeRC.
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5.0 SYSTEM DEVELOPMENT PLAN I
The Phase II development plan for the Sensor Validation system is shown in 3

Figure 36. The development spans two and one-half years, at the end of which a fully
functional software module, integrated with the Session Manager of the SSME Life
Prediction system, will be delivered. The Sensor Validation system architecture, as
described above, allows for incremental addition of validation tests, thus validation
techniques can be developed and implemented by several groups (e.g., neural network
and time series approaches by NASA Lewis) and integrated into the system before
delivery. I

5.1. 1991 Development Tasks
Batch System Design, NASA Review

The architecture of the Batch Processing system will be designed. The result of this task
will be a detailed design document, specifying data structures, software modules and
their interfaces. This design document will be reviewed and approved by NASA before
implementation proceeds.

Intormation Fusion Implementation m
The Information Fusion module will be implemented, using the Bayesian Belief Network
approach. This module will consist of procedure calls to define the network, to run the
update/solution algorithm, and to extract results (probability distribution for any node in
the network).

riedline and Redundant Channel Test Implementation
The Redline and Redundant Channel Test modules will be the first validation techniques
implemented, since they are the most straightforward to implement and their results are

easily verifiable. In addition to the test modules themselves, the Steady-State/Transient
Partitioning, Time-Slice Partitioning, and Batch Report Generation modules will be
implemented and integrated with the Information Fusion module so that the test modules
can be fully tested. The Redline and Redundant channel tests will be fully functional for
all 114 critical PIDs described in Section 3.1.1.

I
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Analytic & Empirical Test Framework Implementation I
The Analytic and Empirical Test modules will be implemented. This initial implementation
will utilize family-averaged characteristic values (the Model Sampling module will not be
implemented), and the tests will only be used on steady-state test data segments. In

addition, only those models developed in Phase I will be implemer'ted (covering
approximately 50 PIDs). The Model Sampling module, characteristic database, and
remaining models will be developed in 1992.

Plant Display Tailoring

An existing prototype of the Interactive Mode Plant Browser will be modified to display •

the results of the Batch Processing system for all 131 PIDs.

Review and Demonstration
A final review will be conducted at Aerojet Propulsion Division in Sacramento, California.
The review will include a demonstration of the Sensor Validation system on the test data

sets currently in Aerojet's possession. A report of the 1991 activities will be delivered to

NASA TBD days following the final review.

Summary
In 1991 a minimally-functional Batch Processing system will be developed, which will
perform validation on all 131 critical PIDs. A very simple graphical user interface

(consisting of the Plant Browser module of the Interactive System) will be developed for

displaying the results of the Batch processing. This development is expected to take

approximately 5-1/2 person-months of effort.

5.2 1992 Development Tasks i
Interactive System Design, NASA Review of Design Document

The architecture of the Interactive Processing system will be designed. The result of this
task will b3 a detailed design document, specifying data structures, software modules

and their interfaces. This design document will be reviewed and approved by NASA
before implementation proceeds.

I
92!

I



NM 3-2583

PID Matrix Implementation
The PID Matrix Authorizer module will be implemented, allowing the analyst to browse

and modify the results of the Batch Mode processing.

Plot Generation Implementation
The Plot Generation module will be implemented for plotting PID values (as requested by
the analyst) and for displaying graphical elements of Batch Mode justifications.

Analytical & Empirical Modeling
The Model Sampling module in the Batch Processing system and the Family Update
module in the Interactive Processing system will be implemented, in addition to the
Family and Engine characteristic databases. A complete set of analytical and empirical
models, covering all 114 critical PIDs, will be developed and implemented.

Reconstruction Implementation
The Reconstruction module (used in both the Batch and Interactive systems) and the
Validated Test Set Generator modules will be implemented.

Evaluation on Test Cases
The Sensor Validation system (the Batch Mode module of which will be essentially

complete) will be evaluated on test cases provided by NASA Lewis.

Review and Demonstration
A final review will be conducted at NASA Lewis Research Center in Cleveland, Ohio.

The review will include a demonstration of the Sensor Validation system on the test

cases provided by NASA. A report of the 1992 activities will be delivered to NASA TBD
days following the final review.

Summary
In 1992 the Sensor Validation system will be complete, except for the ability to justify
conclusions, and without the integration of validation techniques developed by other
groups. At this point, the system can be fielded at MSFC for initial evaluation.
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5.3.1993 Development Tasks I
Justification Generation and Display

The ability for the Batch Mode system to generate justifications, and for the Interactive u

Mode system to display them will be implemented.

Report Generation
The Report Generation module in the Interactive Mode system will be implemented to
produce SunWrite-editable reports describing and justifying the conclusions reached by
the Sensor Validation system.

UCR Generation
The UCR Generation module in the Interactive Mode system will be implemented to
produce UCRs as requested by the analyst.

Integration of Tests
Sensor validation techniques developed by other groups will be integrated into the final
sensor validation system. This includes extending the Information Fusion module to
incorporate the results from these tests.

Integration with Session Manager
Both the Batch and Interactive mode systems will be integrated with the Session
Manager, so that the Sensor Validation system can be run from the unified Life
Prediction system interface.

Review and Demonstration
A final review will be conducted at NASA Lewis Research Center in Cleveland, Ohio.
The review will include a demonstration of the Sensor Validation system on additional
test cases provided by NASA. A report of the 1993 activities will be delivered to NASA I
TBD days following the final review.

Training
One-week of on-site training will be provided to analysts wishing to use the Sensor
Validation system. The training will not only cover how to run both modes of the system,
but will cover how to modify the system's parameters (i.e., Batch thresholds, Test
parameters, and Belief Network probabilities).
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A trip was taken to NASA MSFC on 4-7 June to meet with SSME data

analysts and engine experts, The interviews were conducted with both Martin

Marietta and NASA personnel. In adaition two post test data review were attended.

The results of these interviews have been used to prepare the Users Requirements

Document (URD.) In addition, interviews have been conducted with Aerojet

personnel knowledgable with sensor data validation.

A brief summary of key interviews and comments from the trip to NASA MSFC

are given below. The following questions were asked of the NASA MSFC personnel

during the interviews.

(1) What is the current data validation procedure?

(2) How is previous test data used in the validation procedure?

(3) How are test stand, engine, and component variations accounted for?

(4) What types of computer interfaces are used or would be most useful
(i.e. hardcopy plots, databases, on-line plots and zooms)?

(5) Which sensors historically are prone to failure?
(6) What records of failed PID's are maintained?

(7) What I/O format is required to handle data at MSFC?

(8) What analytical models of the SSME might be available?

(9) Who at MSFC would be principle users of this system?
(10) Who at MSFC would be interested in receiving status updates on the

progress of the system?

(11) Who at MSFC could ask questions regarding specific PID's on recent

tests?

General Comments
All the NASA MSFC and Martin Marietta personnel interviewed were extremely
helpful, interested, and generous with their time during the trip to Huntsville. Two

types of meeting were conducted. First, general overview meetings were held with

Darby Makel and Mark Gage of Aerojet, and Ron De Hoff of SCT, along with a given

MSFC interviewee. In these meetings the program objectives and the relationships

between Task 3 and Task 4 were explained. These meetings were then followed up

. . .= .. n. = , ,,, . = . mnin nminm mm • == , l A -2 I



NAS 3-25883 i

I
with one on one meetings between Darby Makel and the various SSME data 3
analysts.

Interview with David Vaughn: i
David Vaughn is the manager of the Martin Marietta Data Analysis Group. He was

very supportive of the program objectives and stated that there is a "real need" for the
sensor data validation code as soon as possible. He said he would be the contact
person for providing information and data regarding the historical behavior of
particular PID's and test firings. David described their current sensor data validation
procedure as a "confirmation procedure," where the data analysts have sufficient 3
experience and intuition that they can inspect other transducer readings to confirm a
failrd sensor reading. While this procedure is qualitative it appears to be a gooo 3
starting place for a rule based approach. While David did not provide specifics
regarding system requirements, he emphasized the need to link the Sun into their

overall data flow.

Interview with David Foust: U
David Foust is the lead engineer in the Data Analysis Group, he reports to David
Vaughn. David's group has the primary responsibility for detecting sensor failures as
part of their overall responsibility to review engine operation from test to test. The
data analysis group examines a standard set of data plots for each test. If anomalies
are detected other plots are requested after the initial review or previous test records
are examined. Sensor failure detection depends on the analysts' manual review of
the plots. In addition, not all of the CADS and Facility PIDs are plotted. Failed PIDs
not plotted may never be detected (however, these PIDs are not very important for
assessing engine operation). Once a failed PID is detected, a confirmation i
procedure is used to determine if the signal is the result of a sensor problem or an
engine problem. If the anomalous signal occurs during main stage, the sensor i

reading during pretest and post test is examined to see if erratic behavior or scaling
problems exist. In addition, other sensors which should be similarly affected by off
nominal engine behavior are examined. A typical confirmation is to examine
pressures and temperatures upstream and downstream of an anomalous sensor.

The sensor reading will also be compared to previous test data. The previous test
data must always be from the same test stand and preferably with the same engine
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and the same turbopumps. If data with the same engine is not available, then data
from an engine with as many of the same pumps as possible is used. The degree of

variation in a sensor reading is judged based on a two sigma data base maintained
by David Foust's group. A different 2 sigma data base exists for each of the three
NASA SSC test stands. As a general rule an "typical" transducer will fail once in
every 10 tests and small number of "problem" transducers fail on more than 50% of

tests. David Foust viewed an automated sensor data validation procedure as a
significant improvement to the efficiency of the current data review process.

Interview with Brian Pierkarski:
Brian Pierkarski is the lead engineer in the Model Analysis Group, he reports to David
Vaughn. The Model Analysis group is responsible for calculating the performance for
each test. This group uses the test data as an input to the steady state performance
model. Brain's group is very sensitive to the issue of sensor failures and are very
supportive of the data validation and signal reconstruction code. The calculation of
specific impulse is very sensitive to slight errors in the model input PID's. Slight
sensor drifts which are within the 2 sigma band, and may not appear significant to the
data analysts assess engine operation, can cause appreciable errors in the
performance calculation. Signal reconstruction is of particular interest to the model
group. Currently, if a PID needed for the steady state mooel is missing due to a
sensor failure, an approximate average value is input by the operator.

Interview with Marc Neely:
Marc Neely is a NASA MSFC engineer and works in the Liquid Propulsion Branch.
Marc was very interested in the sensor data validation program and offered to provide
help as the program evolved. He reiterated much the same technical information as
discussed above. In addition, he feels that an expert system approach is the most
suitable based the current state of knowledge of the SSME and the lack of a good
model which can yield data that accurately predicts sensor readings. He expressed
the opinion that the it would be necessary to bring a beta-test version of the code to
MSFC, with on-site support from Aerojet. This task would be needed to test out its
operation and build confidence among the analysts and NASA management in the
codes operation and reliability.
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Interview with Bill Baker (Aerojet) U
* Bill Baker is in Data Services. Bill performs data analysis for about 15

programs (including Titan) in the test area.

" The primary function of Data Services is to provide 'Qualified Data' to
Engineering. Thus, the detection and resolution of sensor anomalies is their
responsibility (although, they frequently work together with Engineering in resolving
problems which turn out to be sensor malfunctions).

Procedure: !
-Sensors are calibrated in the lab to specifications.
-Sensors are installed on the stand and hooked up to electrical and recording

equipment.
-A pre-test electrical calibration is run. Each sensor is stepped through four

voltage levels (25, 50, 75, and 100% of maximum nominal value) to simulate its
output. The sensors response to these excitations are recorded and the absolute
value, linearity, and return to zero are computed for each test.

-immediately following a test a post-test electrical calibration is run.
-Approximately one hour after the test (when the engine has completely de-

pressurized) another post-test electrical calibration is run.
(All of the above data is available for diagnostic purposes.)

* For each sensed parameter the following values are computed for each steady-
state summarized time slice for post-test analysis:

-Standard deviation for each sensor.
-Variance of each sensor from a family nominal value. I
-For duplex sensors: Difference and percent difference from each other

(compared to historical difference). I
* No hard "redlines" are used to automatically discredit sensors (although Bill 3

mentioned that a 3-sigma variance warranted investigation).

If two duplex sensors differ by too much and one is especially noisy, then you

tend to discredit the noisy one. I
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There are two kinds of noise:
-Random (positive and negative variance).
-Spike (positive OR negative variance at periodic intervals); indicative of an

electrical problem.

• If you suspect a sensor problem, check the values upstream and downstream
from it.

* Bill always looks at computed performance data first. If there is a problem,
then he starts looking at suspect sensors on an as-needed basis.

If there is a serious sensor problem, will often re-calibrate the sensor in the
metrology lab and apply a correction factor (derived from the re-calibration
procedure) to the sersor data.

Unless a problem is detected, Bill typical does not look at:
-Facility sensors.
-Post-test calibration data.
-Transient data plots.

* Try to look at invariant relationships among sensors to diagnose problems
(e.g., AP or computed resistance). Example:
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I
Interview with Joe Berroteran (Aeroiet)
* Joe is head of Aerojet's Instrumentation group in Design Engineenng. He used

to work for Rocketdyne and performed failure analysis on the SSME
instrumentation.

Current SSME controller sensor validation procedure: I
-Each sensor has yellow lines, red lines, and reasonableness lines (piecewise

models for all steady-state and transient conditions, see below), expressing upper U
and lower bounds for the sensor's values. A yellow line represents the normal
operating range. Red lines demarcate abnormal (often unsafe) operating ranges.
Reasonableness lines demarcate regions which are physically impossible for the

sensors value to fall within.
-Duplex sensors (including most SSME sensors): If either sensor is above the

red line but below the reasonableness line for two consecutive samples, then the

engine is shut down (for certain critical sensors). Otherwise, if either sensor is

over the reasonable line for two consecutive counts then that sensor is assumed to
have failed and is ignored. I

* SSME test procedures do include a pre- and post- test calibration.

There are five major classes of sensors on the SSME: temperature, pressure,

flow, speed, and acceleration.

Open circuits (both hard and intermittent, caused by a broken wire, e.g.) are I
probably the most common sensor failure. Typically an open circuit will cause a

sensors value to go to zero (or some very small constant "offset" value).I
Intermittent open circuits show up as instantaneous variations from normal to zero
(or offset). 3

Short circuits (e.g., due to contamination) are very rare (Joe has only seen one
or two in over 10 years). Instrument circuitry is typically designed to shut down the
sensor if a short occurs. 3

I
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"Spikes" - sensor readings which change faster than their measured

parameters could physically change - are indicative of sensor failures.

Speed and flow sensors are subject to "aliasing" in which the sensor reading

has a low frequency sine wave superimposed onto it. This is fundamentally due to

a timing problem, but can be caused by mis-alignments of the sensors (e.g., Joe

had an example of a flow meter which suffered from aliasing due to its four
impellor blades not being at perfect right angles to each other). This is a very rare

problem.

• Pressure sensors are subject to drift due to thermal effects. Drift typically

shows ut, as a constantly increasing or decreasing bias.

• Pressure sensors are also subject to "overshoot" of about 3-5psi. It can take

around 15 seconds for them to settle to their correct value.

• Temperature sensors can go out of calibration due to thermal expansion. This
results in a constant bias ( 1% FS) in the open circuit direction.

Pressure sensors have a "reference vacuum" on the inner side of their
diaphragm. These sensors can lose this vacuum, resulting in a constant bias (this
should show up as a difference between pre- and post- test calibrations).

Sensor accuracy specs for SSME:
-All sensor systems must be accurate to within 2% FS (including transmission,

A/D conversion, etc.).
-Pressure and temperatures transducers must be accurate to within 1/4% FS.
-Flow and speed transducers must be accurate to within 1/2% FS (?).

Interview with Bill Ferrell (Aeroiet)
• Bill Ferrell has 31 years' experience at Aerojet (including 5 years in the test

area), mostly on the Titan program. He currently analyzes data from Titan flights
and acceptance tests, particularly when an anomaly is discovered.
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Bill confirmed that the primary way sensor malfunctions are currently detected i
and diagnosed on Titan is through analysis of the engine characteristics
(resistances, performance biases, etc.). These characteristics should be relatively

constant across the range of engine performance, and should have a predictable
variance from engine to engine, both making anomaly detection easier.

Bill showed me plots of three related characteristics from the most recent Titan
acceptance test which clearly demonstrate the usefulness of using characteristics

for anomaly detection and diagnosis (see the two pages attached to this report).

These three parameters are: i
ROT - Total resistance from turbopump discharge to

chamber.
ROL - Resistance from turbopump discharge to injector.

ROJ - Resistance across injector (also called ROTCA for
"Chamber Assembly"). a

Resistance = (Pressure drop across line)*(Specific i
Gravity) / (Flow)2

In the most recent test, the values for ROL, ROJ, and ROT were as shown on
the first graph. ROT stayed constant, but ROJ and ROJ varied. However, their
variance was equal in magnitude and opposite in direction, indicating a problem
with the POJ sensor. Note that if all resistances are high or low, then the sensors
used for computing Specific Gravity or Flow should be suspect.

Bill mentioned that accuracy of computed characteristics depends on the I
accuracy of the sensors involved and the formulas used in their derivation. For
example, if the pressure drop between two pressure sensors is very small (e.g., i
across a pipe) then the computed resistance will have a high variance because a
small change in either pressure will have a large effect on computed resistance.

A second method for detecting sensor failures used by Ferrell is to look at the

transient curves of characteristics (even though they don't change much, they still
experience small transients on engine startup and shutdown). The second chart

A-9



NAS 3-25883

attached shows ROJ for the last five Titan turbopump tests over time. The most
recent test clearly shows a deviation from family norms.

Another diagnostic method that Ferrell suggested (given that an engine has
already been tested once to derive an initial set of characteristics) involves taking a
few critical sensor values (at steady-state) and deriving what all other sensor

values should be using the engine's characteristics as true. Deviations of sensors
from these "reconstructed" values are then used for anomaly detection.

Bill also mentioned that the pre-test and post-test calibrations for sensors
should be compared (see the 1/17/91 interview notes for Bill Baker); any
mismatches are indicative of malfunction.

Two other heuristics that Bill mentioned were:
-If a sensed value has an unusually high variance it typically indicates a sensor

problem (Bill visually inspects transient plots and knows what normal variances
"look" like, see the third chart attached to this write-up).

-If a sensed value has an unusually high frequency it typically indicates a

sensor problem, especially if the signal is changing faster than the process could
physically change.
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Appendix B: CHARACTERISTIC AND REGRESSION MODELS
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Results of characteristic equations
based on family average characteristics
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B-2



00 40P 410 41 4212.3 43 435 44

6150

-0
400 405 410 415 420 425 430 435 440

Tine(Sld-relDTimed~rdci

100-3



5350 0/N (1212,30)A

I JI

400 405 410 415 420 425 430 435 440
Time (Solid=real, Dotted=prediction)

50 Residual: StdDev=23.88

0I

-150
400 405 410 415 420 425 430 435 44W

Tim

B-4



_______________ LPOP /2_f209 860.3 _____

~400

3 8 0 .... .... ... ...... ......

40 405 410 415 420 425 430 435 440

Time (Solid=real, Dotted-prediction)

15 Residual: StdDev=2.3 14

-10-

5-



150 lQ.IL $.2 3I

.... .. .... .. ... .. .. .. .. .. ... .. . .. .. .. ... .. ... .. .

_ _ _..... ... . ..........._ _ _ _ _ _ _ _ _ _

1400 0 1 1 2 2 3 3 4
T im......... ....... eal ... t d ....... )

10~~... Reidal ..~e=.31

10
400 405 410 415 420 425 430 435 440

Tiunoid- eal Iotd-rdcin
Residal: td~ev2.31

10I
5 .................... .. .............. ... ............ .............. ......... ...........
0I

00 -5-
............... ....... ... ...................... ...... .... ....

-10

-15I



5350- LPP H 2 209.860,30

5150
400 405 410 415 420 425 430 435 440

Time (Solid=real, Dotted=prediction)

too Residual: StdDev=22.78

4. 100

-50- 400 .405........ 410.. 415...... 420 .... 425.... 430... 435...440.

T0m

5 00-



HPRI 90.395,1212)

4280

4240

4220I
400 405 410 415 420 425 430 435 440

Time (Solid--real, Dotted=prediction)5

Residual: StdDev=1O.46

-20-

400 405 410 415 420 425 430 435 440

TimeU

B-8



________HPO? R 1 90,395,1212)

3880400 405 410 415 420 425 430 435 440
Time (Solid=real, Dotted=predir~tion)

40 Residual: StdDev= 10.46

-40
400 405 410 415 420 425 430 435 440

Time

B-9



6600 _________HPOP R1 (90,395,1212)_____

6400

6200' 3.

6800 :-

400 405 410 415 420 425 430 435 440

Time (Solid real, Dotted=prediction)

400 Residual: StdDev=92.84

4-00

-400,
400 405 410 415 420 425 430 435 440

TimeI

B-10



1 7X10 4  LPFP O/N (1205,32)

v 1.7-

'.4AA.1.72

Re1ua:.64v=1.

400 405 410 415 420 425 430 435 40

Time (So TmeaDteprdcin

Reiul:,dev4.

-500~
........... ........................ .. ........ ..B- i l .. ..........



104 3I 10.2
1.68

... .... . .... ......

1-s ,~~ ~
.4 ...00 .....4.05 ..... ..410......... 415......... 420......... 425......... 430......... 435................ 0

.......... Tim e (So....d....... D o........ted.......p.........i........ion).....

400 405 Residual St42 0 .425 40 4314

0

500I
400 405 410 415 420 425 430 435 4403

Time

B-1U
Aa:'W' X.'OI



270 PF :P H/2 (203,819.3;)

26

400 405 410 415 420 425 430 435 440

Time (Solid--real, Dotted-prediction)

Residual: StdDev=1.588
14

S 1 2 .. ..... ..... .... . ... .. .... .... ..... ...... .... ........ .

10

4-
400 405 410 415 420 425 430 435 440

Timne

B- 13



25 LPFP~~~H/N2 (203.819.32) _ _______I

20-

TII
10

5 1~L±____

400 405 410 415 420 425 430 435 440

Time (Solid--real, Dotted-prediction)

Residual: StdDev=1.588

00

400 405 410 415 420 425 430 435 440

Tim

B-14



1.72 ,104  LPFP H/N2 203.819 .32)

AI*.J 1i~' -

1.66
400 405 410 415 420 425 430 435 440

Tim (Solid--real, Dotted=prediction)

Residual: StdDev=53.92

~-400-

-500
400 405 410 415 420 425 430 435 440

Timne

B-15



W7x0 HPFP 0/N (133.260)I

1.72. L

1.68 -I

1.64 I400 405 410 415 420 425 430 435 440

Time (Solid--real, Dotted=prediction)

Residual: StdDev-280.3

1000~ 0 1 1 2 2 3 3 4

.. ..... .......... ...... ..... ...... .... . .... ..... ..... ......e. ... ..... .I. .

500
0U
.. ... .... ... .... ... .... ... .... ... .... ... .... ... .... .... ... .... ... .... ... .... ... .... ... .... ... .. .. ..

-1000
400 05 10 45 40 45 43 43 44

B- 16



Residual:PF (133v6.2

400 405 410 415 420 425 430 435 440

Time

.~~~ ~ ~ 17 ....



75 ~ ~ ~H HPP 2 t52,13326

6000 I

6500 Iq~
400 405 410 415 420 425 430 435 440

Time (Solid--real, Dotted-prediction)3

Residual: StdDev=341.1

-1000
400 405 410 415 420 425 430 435 4.40

Time

r0415eU
B-18



1.6
400~ ~~~ 40.... 410 41.2 2 3 3 4

Time- .....~eal ...ed .e..t o

Reida: t~e=4R.

400 405 410 415 420 425 430 435 440

Tie SoidrelDTimed~rdci

10006/t Reiua:-19v=4.



~3.6

3.5

400o 405 410 415 420 425 430 435 440
Time (Solid--real, Dotted=prediction)5

2000 Residual: StdDev=603.7

-2000

400 405 410 415 420 425 430 435 440

Time

B-20



6700 MC RI (52,129,133).

.... . .. P i -

6650 1

6600 111

6550 L
400 405 410 415 420 425 430 435 440

Time (Solid=real, Dotted=prediction)

Residual: StdDev=22.3750 r

.~ 0

-150 I L

400 405 410 415 420 425 430 435 440

Time

B-21



3250 I

3150.1
400 405 410 415 420 425 430 435 440

Time (Solid--real, Dotted-prediction)3

Residual: StdDev=22.37

*~100-

*~ 0

-50

40 5 410 415 420 425 430 435 44w

Time

B-22



1x104 MCRI (52,129,133)

1.71

S1.69

1.67
400 405 410 415 420 425 430 435 440

Time (Solid=real, Dotted=prediction)

Residual: StdDev=56.45

3~ 00

-100
400 405 410 415 420 425 430 435 440

Time

B-23



MC R2 (52,17,133) i
6900 ,

..... ...... ........ ............ . ....... .....

S6700. .......... ......... ........................ ................ .................. .......! ........ ...i ............... i ........ ..

6600 1
6 5 0 0 '_ _ _ _ _ _ _ __, , _ , ,

400 405 410 415 420 425 430 435 440

Time (Solid=real, Dotted=prediction) 3
-150 Residual: StdDev=15.25

-200

C.,

-2501
400 405 410 415 420 425 430 435 440 

Time

I
I
I
I
I
!
I
I

B-2 4 1



400

~4800-

4600Nn

400 405 410 415 420 425 430 435 40
Timle (Solid--real, Dotted-prediction)

Residual: StdDev= 15.25

200

400 405 410 415 420 425 430 435 440
Time

I;$44 //54fly 5
B-25



17X14MC R2 (52,17,133)I

1.7 1 U* 1*&

IM 1.65 1

400 405 410 415 420 425 430 435 440
Time (Solid--real, Dotted=prediction)3

1200 Residual: StdDev=69.91

S1100 .U.......

~900I

~800 3
7001

400 405 410 415 420 425 430 435 4.40
Tim

B-2 6



4920 MCR3 17.436,133)

4910- -(

4900

4890

4 8 8 0.. . .... .. ..... .. ..... ....... ... ...... ..... ......
4870

400 405 410 415 420 425 430 435 440
Time (Solid=real, Dotted=prediction)

40 Residual: StdDev=8.1 11

78 2 0..........- .......

20

S-20

-40
400 405 410 415 420 425 430 435 440

Time

B-27



MC R3 (17,436,133)I

4790 .I... . .........
400 0 1 1 2 2 3 3 4

Tie4810raDozdp~dcin

40
400 405 410 415 420 425 430 435 440Time(Sod--rea, Doted-prcfidoI

i mul Sdev .I140U
.. .. ... ... ... .... ..... .. .. ... .. ... ... .... ..... ... .... .. ..... .
20I
0I
.. ... ... ... ...! .... ... ... .. .. .. .... .... .. .... .. ... ..... .. .... .... .. .1. .

-2 ......................................................................................

-2



X104 MC R3 (17,436133)

1.8.

1. .. .. . .

1.2
400 405 410 415 420 425 430 435 440

Time (Solid-real, ]Dotted=prediction)

Residual: StdDev=-877.7

4000

2000

-20001
400 405 410 415 420 425 430 435 440

Time

B-29



6900 .MC R4 (52,436,133)

6700 I
6600

6500'
400 405 410 415 420 425 430 435 440

Time (Solid--real, Dottcd=prediction)I

__150 _ Residual: StdDev=15.76 ___

-300 ________

400 405 410 415 420 425 430 435 440I

Time

B-30



1.75 MC R4 (52,436,133)
1.7

S1.65-

1.51 ..
400 405 410 415 420 425 430 435 440

Tim (Solid-reAI, Dotted=prediction)

1200__ __ __ Residual: StdD ev=69.32_ _ _ _

owo

~9w
800

700
400 405 410 415 420 425 430 435 440

Time

B- 31



7800____ PRE Ri (59,58.1212)

7600I

400 405 410 415 420 425 430 435 440

Tim (Solid--real, Dotted--prediction)

250 Residual: StdDev=20.79

2;~00-

50
400 405 410 415 420 425 430 435 440

TimeI

B-32



5600-

S5500 ,.

400 405 410 415 420 425 430 435 440
Time (Solid=real, Dotted=prediction)

Residual: StdDev=20.79

050

-250
400 405 410 415 420 425 430 435 440

Time

B-33



6500 _ PRE RI (59.58.1212)Q_____

6300.....

600

400 405 410 415 420 425 430 435 440

Time (Solid--real, Donted=prediction)

-100 Residual: StdDev=29.02

10

-200

-300
400 405 410 415 420 425 430 435 440

Tim

B-34



7800 ~PRE R2 (59,480,12121

............................. ...................

150 Residual: StdDev= 19.24

.. ...... ....... ...... .. .. .. .... ....... ..... .... ..

~100

~w50

0,
400 405 410 415 420 425 430 435 40

Time

B-35



5700 .PRE R2 (59,480.1212)

5650 e.

dL

400 405 410 415 420 42. 430 435 440
Time (Solid--real, Dotted--prediction)3

Residual: StdDev=19.24

0I

-1501
400 405 410 415 420 425 430 435 440

Time

B-36



6400 PRE R2 (59,480,1212)

6 3 0 0 .. .. ...... .. .. .. ... ... .. ..

6100-

60001 I __ __ _________ _400 405 410 415 420 425 430 435 440
Time (SoU -real, Dotted=prediction)

0 Residual: StdDev=28.03

-10

-200
400 45 410 415 42 425 430 435 440

Time

B- 37



________ HPOP R2 (209,90,1212)____

............... .............. ................ : ............................ .. . ..........__ _ __ _ __ _ __ __ _ __ _ __

VIE
3~00

400 405 410 415 420 425 430 435 4403
~~~Time ldmaDteprdcin

150 Rsidul: Sd~ev22.U
100I

.. .. .. ... .. .... ... .. ... .... .. .. ... ... .. .. ... .. ... .. ... .. .
50I

.........
0I

B- 381



4350-

4300 a ~

4 2 50 .........I ..... ..........E. ....... .....

42001I
400 405 410 415 420 425 430 435 440

Time (Solid--real, Dotted-prediction)

______ ______Residual: StdDev=22.77

00 0 1 1 2 2 3 3 4

T7m

eg ~ ~ ~ ~ ~ ~ ~ ~ 39................ ....... . ...... . . . ...



620HPOP R2 (209,90,1212)I

6150I

6050 I
400 405 410 415 420 425 430 435 440

Tim (Solid-real, Dotted=prediction)3

100 Residual: StdDev=17.97

00

-50
4W0 Q5 410 415 420 425 430 435 440

TimneI

B-40



450 HPOP R3 (209,395,1212)

400 40 41 41 42 42 43 43 40

350

400 405 410 415 420 425 430 435 440

Tim (Sli~reTimoed~rdci

100~~~~~ 41iul tde=87



4050 . .HPOP R3 (209,395,1212)I

4000 ......

.. .. .... .. .. .. ... ... ... .. ... .. .. .. .

400 405 410 415 420 425 430 435 440

Time (Solid--real, Dotted-prediction)3

so Residual: StdDev=18.71

0 %

~-50- .. .. ... ... .. .... .. ... .... .... ... .. .... ... .. .. ... .. .. ... .. .... .
-100

400 405 410 415 420 425 430 435 440

Time

B-42



HPOP R3 (209,395,1212)

6100 Rsda:Sde=6 9________

00 405 410 415 420 425 430 435 440

B-44



I I I Il I llI

I
I
I

I

I
I

Results of characteristic equations n

using engine specific datan

i Test A2497

I
I
I
I
I
I
I
U

B- 44n



620LPOP (1212,30)

~6150 -K

410 415 420 425 430 435 440
Time (Solid=real, Dotted-prediction)

Residual: StdDev=26.59

-100

40 41 42.45.3.45.4

Time

Pi~i+'- so~

Pws~i- ?65iw A*1

B-45



LPOPOL (121230).,.

5350
.. ... ... ... ...... ... ...... ... ...... ... ...... ... ... .. ... ... .... ... ... .. .. .. ... ..

5300__ _ _ __ _ _ __ _ _ __ _ __ _ _

410 415 420 425 430 435 440
Time (Solid--Teal, Dofted=prediction)I

Residual: StdDev=22.69

00

CIO
4045420 425 430 435 440

Time

44 I

B-46



LPOP FV1N2 (209,860,30)

410

40

-10-

410 415 420 425 430 435 440

~~~Time (oi-TaDte~rdcin

10-4



_______________ LPP HN2 $209,860.30) __ __

140 ...

130 -'

4045420 425 430 435 440
Time (Solid--Teal, Dotted=prediction)

Residual: StdDev=2.3 13

140

-5-

410 415 420 425 430 435 440

Time

B-48



LPOP I2 (209,86030)

5300-

5150
410 415 420 425 430 435 440

Time (Solid=real, Dotted=prediction)

100 Residual: StdDev--22.59

0

-1501410 415 420 425 430 435 440
Time

so 51, f I

I B-49



HPOP R1 90,395,1212 I
4280 I

S4260

4220I
410 415 420 425 430 435 440

Tune (Sohid real, Dotted-prediction)

Residual: StdDev=10.5340I
2 0 -.. ... .. ...... .... ... ...... .. .... .. ... ... .. ... .. .

410 415 420 425 430 435 4401

Tim

Vqv t/ lU

B-50



____ HPOP RI (90,395,1212) __ __

3960~:

1 420425 30345W44

Time (Solid--real, Dotted-prediction)

I Residual: StdDev=10.53

I4

I ~ ~~-4041 1 2 2 3 3 4

i Thne

B- 51



640HPOPRI (90,395,1212) __

6200 ...... ....

6000 jij-4-c ' fI'i -. :

5800 . .__

410 415 420 425 430 435 440

Time (Solid--real, Dotted--prediction)

400 Residual: StdDev=92.79

2400

410 415 420 425 430 435 440

TimeI

4Y- -L-71

B-52



165X10 4  LPFP I,120532)

I 91.655

I 1. i.. I II1.65*

410 415 420 425 430 435 440

Tune (Solid-rTeal, Dotted prediction)

20 Residual: StdDev-40.29

41 415 420 425 430 435 440

Time

IB- 53



14LP I(120532)1
1.658

1.675

1.675

1.66
410 415 420 425 430 435 440

Time (Solid--real, Dotted=prediction)

200 Residual: StdDev=40.67

-00I

-200
410 415 420 425 430 435 440

Time

IV-

B-54



270 .LPFP H/2 203,819.32)

265

255
410 415 420 425 430 435 440

Time (Solid--real, Dotted=prediction)

10 Residual: StdDev=1.626

I410 415 420 425 430 435 440I Time

I+

I e~p6, +/- q4

IB- 55



15 LPPH-/N2 (203,819 32)I
.. ... .. .. .. ..... ... : .. ..... ...

4. ~.'T.
10 :~j - *~

00I

00

410 415 420 425 430 435 440

Time (oli imDed~mfci5 Reidua: St~ev=.6I
aN

0I
-5 ... ... ... ... ...... ... ... ... .... .... ... ... .... .. .... ... ... ... ..... .... ... ... .. ... ..
-10I

B- 56



1.69 104 LPFP H/2 (203,819.32)

1.66

410 415 420 425 430 435 440
Tine (Solid=real, Dotted prediction)

200 Residual: StdDev=53.92

2~ 00

0

-200410 415 420 425 430 435 440
Time

B-57



17X14HPFP 0 (33,2§P)

1.65 * . .

410 415 420 425 430 435 440

Time (Solid--Teal, Dotted=predictiori)I

1000 Residual: StdDev=282.I

*~500

0I
-- 500

410 415 420 425 430 435 44

Tim

SOI

B-58



10 xl PFP O (133,260)
3.7

3.65 . I - . t .

I ~ 3.6

3 .5 5 .. ......... ... ... .-.. ............ ..... .... .. .... .........

3.5
410 415 420 425 430 435 440

Time (Solid-remal, Dotted=prediction)

I 2000Residual: StdDev=606.5

1 -2000

41045404503 3 4

3 Time

B-5



750HF /2 52,133,260)

7000 -. 4

6500 7 .Z:.

6 " ~ E .. .... . .. . ... . ' .
. - . *

410 415 420 425 430 435 440

Time (Sohid-rea, Dotted-prediction)

1000 Residual: StdDev=345

-500

C4 -4 -5 0 ...... ... ... ........ ..... ......... ....... .......... .... ........
-1000

410 415 420 425 430 435 440
TimeI

Ps~~/- 0

B-60



3.5X10 4  HPFP 2 52.133.260'

3.7

3.65.I ~ 3.6

13 .5 5 ... ... ........ .......... .... ........ ... .

3.5
410 415 420 425 430 435 440

Time (Sohid--real, Dotted=prediction)

Residual: StdDev=605.5

-1000

-2000
410 415 420 425 430 435 440

Time

BI6



660MC RI (52.129,133)I

6550:

410 415 420 425 430 435 440

Time (Solid=real, Dotted=prediction)

Residual: StdDev=22.07100

~-50

-100
410 415 420 425 430 435 440

Time

N U
44U

B-62



MC R1 (52,129,133)

3200 0

r 0

3100I410 415 420 425 430 435 440

~~~Time ldraDteprdcin

ReiulUtde=20
10
50

.I. ... .... .....
I0

.r .. ....... ....... .. .. ...v - . ..........
I5

IB- 63



X104MC R (5.12913I1.71

410 415 420 425 430 435 440

Time (Solid--real, Dotted--prediction)

Residual: StdDev=-56.3 1

-200
410 415 420 425 430 435 4.40

Time

13 U

B-64



6640 MC R2 (5!2,17,133q

3 6600

6540
410 415 420 425 430 435 440

Time (Solid real, Dotted-predfiction)

3 40Residual: StdDev=14.42

20

3 -20....

I 6410 415 420 425 430 435 440
Time

Io
-VI1

I-b



4980 7 ,~P-

4920 - ....... .. .... .... . .

4840I
410 415 420 425 430 435 440

Time (Solid--real, Dotted=prediction)

60 Residual: StdDev=14.42

20 .................. ***,........I....... ............................

S 0 -2 0 ... .. ...... ... .... .... .... ..... .....
-40-

410 415 420 425 430 435 440

TimeI

P/7 -- N

B-66



1.1X104 MC R2 (52,17,133)

~1.7

1.6

410 415 420 425 430 435 440

~~~Time ld-raDteprdcin

30Ieiul Sde=20
200

.. ...
.I ..... ......... ......

I P5~ / 100

* JIG

UO

B- 67



MC R3 17,436,133) I
4920
4 9 1 0 I . .... .. . . . ... . ......... ... ............. . . . ................ ................ .......... ... . ..... ..... ............. . ...............

4900

4890

4870"
410 415 420 425 430 435 440

Time (Solid-real, Dotted-prediction) 3
40 _Residual: StdDev=8.249

..... ..... ... .... .. . ............ ... ..... .... ... .. .... ................ . ............................ :............... ...... . .... ...........................

20

0 ......................... ................. .............................................

-40

410 415 420 425 430 435 440

Time

I
I
I
I
I

I

I
B-6B



MC R3 (17,436,133)______

48600 L *

424458324504

Tine (Solid-real, Dotted-prediction)

Residual: StdDev=8.249

I -~4041 1 2 2 3 3 4

2 0 ... . ..... ... .... .. ...... ... .... ... ... .... ... ..... ... .. .... ..

U0
.........I... ............ .................

...............I............ .

Iq3 B-- 69



2X10
4  MC R3 (17 436,133) .I

.. ..........................

1.6.

1.4.

410 415 420 425 430 435 440
Time (Solid-real, Dotted=prediction)

Residual: StdDev--93 1

-2000

0 .I

-4000
410 415 420 425 430 435 440

Tim

q3U

B-7 0



*I MCR4 (52,436,133)

6580

1 6560

6410 415 420 425 430 435 440

Time (Solid--real, Dotted=prediction)

3 Residual: StdDev=14.83

40 41 42 42 43 43 440..

Time

B-I



1.1X14MC R4 (52436,133)1

1.67I
410 415 420 425 430 435 440

Time (Solid--eal, Dotted=prediction)

300 Residual: StdDev=70.89

S100

01

*-100

-200
410 415 420 425 430 435 440

TimeI

Vt 3 3

B-72



7800 T-PRE R! (59,58,1212)

750

4045420 425 430 435 440

Tim (Sli~reTimoted~rdci

-507



5550 PRE RI (59,58,1212)-

5500 . ....... .. .

CIO
410 415 420 425 430 435 440

Time (Sohid real, Dotted-prediction)1

Residual: StdDev=20. 12

0

-100
410 415 420 425 430 435 440

Time

B-74



6250 PRE RI (59,58,1212)

6200

S6150

410 415 420 425 430 435 440

Time (Sohid real, Dotted prediction)

100 Residual: StdDev=27. I

5-0

-150
410 415 420 425 430 435 440

Time

B- 75



780PR.ER2 (59,480,1212)U

mI

7600I
410 415 420 425 430 435 440

Time (Solid-real, Dotted=prediction)

100 Residual: StdDev=18.77

~50 U
0

-501
410 415 420 425 430 435 440

Time

~5-q: f/-('I I

B-76



5650PRE R2 (9,480,1212)

5650

0

5100
410 415 420 425 430 435 440

Tie SoidrelDTied~rdci

Reiua:-77 v=87



6250 - _ PRE R2 (59,480,12121

6200-

~j6150 :

6050 I -
410 415 420 425 430 435 440

Time (Solid=real, Dotted=prediction)

Residual: StdDev=26.84

-100 7

r4 -JU
-150

410 415 420 425 430 435 440

Time

B-78



I ~HPOP R2 (209,90,1212) __

450

4.0 *44L4 __ __ __ .41

410 415 420 425 430 435 440

~~~Time d-TaDteprdcin

Resiual td6<2.5

10



4350 ~HPO R (09,90,1 12)L

4300-

42.50 -f.

4200

4150 _

4045420 425 430 435 440
Tie(o i~e Iotdpedci

100 Rsidul: Sd~ev21.U
... ... ... ... .. .... ..... ...

410 415 420 425~ 43 454

B-80



____ HPOP R2 (209,90,12 12_

1045 40 4S 3 3 4

.... ~im ........ al .......... t.....d.. .......... d.........t.....o.....

40 45 420 425 430 4 35 440
Tie SoidrelDTimed~rdci

Resiual 1/Stde=71

B-03



soo - HPOP R3 (209.395.1212)___
50~~

450 - ............. ........ ........ ... ..

350 ........

410 415 420 425 430 435 440

Time (Solid=real, Dotted=prediction)

100 Residual: StdiDev=17.76loI

-1001A
410 415 420 425 430 435 440

Time

B-82



HPQPR3(29911

4000

3950 -......

3900

4045420 42543

Time (Solid real, Dotted prediction)

Residual: StdDev=17.76

00

0

410 415 420 425 430 43540
Time

B-83



____ HPOP R3 (209,395,1212 I

10454045 3 3 4

Time (Solid=real, Dotted=prediction)

50Residual: StdDev=15.53 ______ _____

4045420 425 430 435 440

Time

B-84



Results of characteristic equations
applied to engine start transient using
engine specific characteristics derived
from steady state

Test A2497

B-85



8000

........... ....

.... .... .... ................ ............ ................ .............. ................ -

0 5 10 15 20 25 30
Time (Solid-real, Dotted=prediction)

0 Residual: StdDev=625

i
0 12

- I

4Mi~

B-86



6000 .LPOP Q'(1212,30)

6000

2000-

0 5 10 15 20 25 30
Time (Sohid--real, Dotted prediction)

3000 Residual: StdDev=533.4 _____ _____

20

00 5 10 15 20 25 30
Tim

B- 87



40LkPOP N2 f209,860 .30)I

300-

0510 15 20 25 30
Tirm (Solid=reaL, Dotted=prediction)3

150 __________ Residual: StdDev=19.86 ___________

0

0510 15 20 25 30

Time

Pt-/- pU

B-88



250 LPO P "-V2 20985.30)
.. .. ...... .... ..

200

150-

100 44

50 
.

0 510 15 20 25 30

Time (Solid--real, Dotted=prediction)

50 ________ ________Residual: StdDev= 19.86 ____ _____

50

-100

-150 ______ 
_______ J

0 5 10 15 20 25 30

Time

B-89



6(X)0 ~~~LPOP WKN 209.860.30) ________

4000

... .. ..

0510 15 20 25 30

Time (Solid-real, Dotted-prediction)3

1000 r Residual: StdDev=9O.7 II

00

-2000L________
0 5 10 15 20 25 30

Time

B-90



500HPO Rl(90,395122)-_____

4 0 0 0 . -................ ......... -........ -........

0
0 5 10 15 20 25 30

Time (Sohid real, Dotted prediction)

1500 r__________ Residual: StdDev=255.5 ___________

.~1000

~500

-500 .
0 5 10 15 20 25 30

Tinm

B-9 1



4000__-__ HPOP RI (90,395,1212) -

3000 . .4

~2000 II

1000

0 5 10 15 20 25 30
Time (Solid--real, Dotted=prediction)3

500 r r ~~Residual: StdDev=255.5 _____ __

-5003

.- 100 i

TimeI

B-92



1.5 X 104 - PO R1 905,2),

0.5

0 5 10 15 20 25 30
Time (Solid~real, Dotted~prediction)

__________________ Residual: StdDev=233 1

51000

-5000 L _______

0 5 10 15 20 25 30
Time

B- 93



x104 LPFP N(120532 , __

1.5

05 10 15 20 25 30
Time (Solid=reaL, Dotted=prediction)3

0 Residual: StdDev=1 166

.. ... ...... ... ... .... ...... ... .... ... ... ... .... ... .... ... .... ... .... ... .... ... ...I. .
~2000-

.-4-000-
. _ _ __.. _ _.. . ... . .. . .. .. . .. ... __.. . .. .. .. . .. . __.. .. ... . .. . .. __.. . .. .. ... . .. .. . .. .. .. .. . .. .

-6000'
0 5 10 15 20 25 30

TimeI

B-94



2X10 4  
-PF -__(10532

1.5-

.. ... ............ ... .. .. ... ... ......... ..... ... ...................

10 15 20 25 30
Tim (Slid-Teled-ricon

P.alI 
e(-7

6000 esidal: B-95v



LPFP /N2 (203,819.32)

200U

0

0510 15 20 25 301
Time (Sohid-rieal, Dotted-prediction)

_________________ Residual: StdDev=9.48 ___________

20-51 52 53
....... ... T... ... ..... ....I. . . .........

0-U
-201
0 5 1 15 2 25 3

B-96



80 LPFP H/N2 2om Ri l93 2

60

20 r ......... ..

.. .. .. .. . . ........ __ __ __ ................ ......... ... .. .. . . . ................. _ .. . . .

20 5 1 0 15 20 25 30

Tie Soid-mlDTied~rdci

0--



2 X10 4  LPF P H/N2 203,819,32) ,.I

15-- , .......... i ................ ................. * ................ i................ i................ ............... ................. !......... ..........I
el ......... ........ ..........

........ ; .... ." ................. ................ ................ i................ i................ ................ . . . . . . . . . . . . . . . . . ,. . . ....

0 .5 -J ii .... .. . . . . . . . . . . . ......... ................. ................ ................ -............... ................ ................ ....... .
0.5

0 5 10 15 20 25 30
Time (Solid=real, Doned-prediction)

2000 -Residual: StdDev=752.3

-2000..3- ... ... ................ . . ... ....... . . ..... ... : .. .. . - . ... ....... -...-.... . ...............

-9 -4 0 0 0 W . ... ................. .......................................... ............... ............ ............... ........................... ............................

-6000
0 5 10 15 20 25 30

Time

B
I
I
I
I

I
I

B-98 U



2lO X1__4 HPIPM(133,260)

0.5-

0
0 5 10 15 20 25 30

Time (Solid=real, Dotted=prediction)

__________________Residual: StdDev=604.5 _____1000g

-3000

0 5 10 15 20 25 30

Tim

B- 99



4X10 4  
-HPFP O/N(133,260)_____

3I

0510 15 20 25 30
Time (Solid-real, Dotted=prediction)3

________Residual: StdDev=1300 _________6000)

*- 4000 .... ............ I...
2 0 0 0 ... ...... .. .. I..... ........... ..... ...... ......... ......... ..

-2000 0 5 1 15 3 1

TimeI

B-100



_____ _____ HPFP H/N2 (52.133 .260)

6000

6000 - ...........

I ~ 4000-

0 .....
0 5 10 15 20 25 30

Time (Solid=real, Dotted=prediction)

__________________Residual: StdDev=554. 1 ____ _____

~2000

4160000 _ _

0510 15 20 25 30I Time

B- 101



2 x104 HPFP KN2(52,133.2M0)

........ .......... ....................... ................

0.5

0 5 10 15 20 25 30
Time (Solid-real, Dotted=prediction)

6000 ~~~~Residual: StdDev=554. 1 _____ ___

........................ . .................... .. . . .. ... .................. I
4" ' " ....... ........... ... ... 

2 0 0 ....... .:. ........... ..... ................. :...... .......... .................: ................ ................ ............... ........ ........ ................

~I

" 0 .- ' ...... . ..... . .. ... . ..... .".. .. |' - - - '[l rr r  'e "" l V " . .......

° I
-2000 ''

0 5 10 15 20 25 30

I
I
U
I

I

B-102 I



x10 4  HPPP /2 (52,1334260) _______

4

I 2

I 1 4
0

0 5 10 15 20 25 30
Time (Solid=real, Dotted=prediction)

_________Residual: StdDev=1986 ___________I ~5000 rr

-15000 L_______ _______ ______I0 5 10 1,5 20 25 30I Time

3/I-

B-103



MC RI (52,129,133) .8000

6 0 0 .... . . . .i .... .. .. .... .... . . ... ... .. . . ... .. .. .... ... ... ... .... ... ... ... ... ... .. . . . . -.. .. .... . . . .... .... . . . . . ... .. .... .... .. .. i. .. .... ... . . .

2000

0 ........................... __.

0 5 10 15 20 25 30
Time (Solid=real, Dotted--prediction)

800____ Residual: StdDev=183.6 _
8001

400-

1200-

0

_____I

-200 ' i __, i
0 5 10 15 20 25 30

Tm~e I
I
I
I
I
I

I
I

B- 104 I



4000 MC RI (2,2,13)

J 12000,

0 5 10 15 20 25 30
Time (Sohid=real, Dotted=prediction)

200 __________ Residual: StdDev=183.6 ___________

~200

10250202

0101522530
Tune

B10



2 04M I ,2913

0.5

05I

0 -2000 2 2 3

-4000

10001 1 0 53
........... ....................................................i. .......e. ...... ...U.

2000 U
.. ... ... ... ... .. .... ... ... ... ...... ... ... ..... .. ... ... ... .....

300I
-4(M

B- 106



8000

6000

"4000-

20

0 5 10 15 20 25 30
Time (Solid=real, Dotted=prediction)

Residual: StdDev=76.33400

~300 - .......

~200-

0-

-100 I

0 5 10 15 20 25 30
Time

B-107



5000 M..JC R2 (52,17133)__-_____

3000...... I......

300

0 5 10 15 20 25 30
Time (Solid--ieal, Dotted=prediction)

o100 Residual: StdDev=76.33

0 U.. ............................ ........... ...;.. .......
... .. . . o 110..1 I w l . .. . .. ....... ... ... .. .......... ... .. .

0510 15 20 25 30

Tim

B-108



X10 4  MC R2 (52,17,133)__ ____

2 ............. ........ ....... ,--.~

1.5.

0.5-

0 1 t-----

0 5 10 15 20 25 30
Time (Solid--real, Dotted=prediction)

1000 Residual: StdDev=650. 1 ___________

.. ...................... ......... .............. ................

0 -1000 ..- . Ai.

0 5 10 15 20 25 30
Thm

B-109



5000 -. _____ MC R3 (17,436,133) _ _______

3000

20

0 5 10 15 20 25 30

Tim (Solid-real, Dotted=prodiction)I

44)() ~Residual: StdDev=52.67 _____

4300

0510 15 20 25 30
Time

B-110



MC R3 (17,436,133) _ _______

4000

. 3000 ......... z

12000

0 5 10 15 20 25 30
Time (Sohid--eal, Dotted-prediction)

Residual: StdDev=52.67

-100

~-300.....

0 5 10 15 20 25 30
Time

B-ill



4X10 4  MC R3 (17.436.13), __

3 4 I
.. . .. . .. . .. ... . . .. .. .. ..

2.. .. .. .. .... .. .. .. .. . .. .. .. . ... . . .. . . .... .... ..... .. .. .. . . . *.. 

01

00 5 1015 20 253

Time (Solid--real, Dotted-prediction)

X10 4  
______Residual: StdDev=5027 ___________

-1I

0510 15 20 25 30

Time

B-112



8000 R4 (42,~3.3

6000r

~40M -

2000-

0 5 10 15 20 25 30
Time (Solid---mal, Dotted=prediction)

~00 ________________Residual: StdDev=102. 1__________

640

~200-

0
0 5 10 15 20 25 30

Time

Fk qLo

B- 113



5000 - M.C RA (5246,133)____

% 3000 - ... ........

0 L
0 5 10 15 20 25 30

Time (Soid-real, Dote=prediction)

0 Residual: StzdDev=102.1*1 I
.. ....... . . ... ........ ..... .......0.

2W' I
.. .. .......... ........................... ............. .. .......0. ..

-600 _______J

0 5 10 15 20 25 30

TimeI

B-111



i 2 ~X10 4  
_ __ MC R452436,133) __

1.5

0o ... ... ... .. ........... ...___ _

0o 51s1 20 25 30
Time (Solid-real, Dotted=prediction)

I ~ ~~~~~Residual: StdDev=886.7 ___________

-2000

*-4000

I ~ ~500)ILI _______ _______0 5 10 15 20 25 30

Time

BI1



8000 PRE RI (59,58,1212)______

6000

2000-

0 V
0 5 10 15 20 25 30

Time (Solid=real, Dozte=prediction)

3000_________ Residual: StdDev=367.7 _____ ___

31000r I

0510 15 20 25 30
Time

B-116



6()00 ~PRE RI (59,58,1212)______

4000

2000-

00

0 5 10 15 20 25 30
Time (Solid--real, Dotted-prediction)

1000_________ Residual: StdDev=367.7 ______ _____

00

00.

-S-2000 -....... ....

-30001 L ____IJ

0 5 1 15 20 25 30
Time

B-117



8000 PRE RI 59,58,1212)_____

.: . ... ..... ... ... ... ... ...... ....... . ..... ..... .. ...... .. ..... ... ... .....

c44000O .. ..... ... ... .... .. ... ... ..... ... .... .. ... .... .. ..... ... ... ... ... ... .. ... ... .
2000

0o 10 15 20 25 30

Time (Solid=real, Dotted=prediction)

2000 __________ Residual: StdDev=875.7 _____ ____

-2000I

-6000
0 5 10 15 20 25 30

Time

B-118



8000 ~PRE R2 (59,480,1212)

6000 ....

42000-

0
0 5 10 15 20 25 30

~~~Time oi-TaDte~rdcin

2500Resiual S !tdB-hg 6



6000 PRE R2 (59,480,122L-I

000

2000 1

00 5 10 15 20 153
Time (Solid--real, Dotted=prediction)

0Residual: StdDev=366 ______ _____

-500 I
1-1000I

-1500

4-2000 1
-2500 £_______

0 5 10 15 20 25 30
TimeI

cvU

B-120



8000 .PRE R2 (59,480.1212)

6000

~4000-

2000

0[
0 5 10 15 20 25 30

Time (Sohid=real, Dotted=prediction)

0 ______________________Residual: Std Dev=909.3_______________

~2000-

- 4000-

-6000
0 5 10 15 20 25 30

Time

B-121



2500 HPP R2__ (209,9,1212

2 0 0 0 -.. .. ......... .....I.. .............. ... .. ........................

1500........

0I
0510 15 20 25 30

Time (Solid=real, Dotted=prediction)

1000 Residual: StdDev=360.4

*~ 0

Iwo I

0510 15 20 25 30
Time

B-122



5000 *______ HPOP R (0990,11212) ___

1000

~2000 -..............

0-
0 5 10 15 20 25 30

Time (ol TmeaDteprdcin

Res~idul: tW v=6

30002



8000 HPOP R2 09,90, 1212) _ _______1

6 0 0 0 .~ ......... ... ...... .... ........

4000

0-

0 5 10 15 20 25 30
Time (Solid=real, Dotted--prediction)3

0 ~~Residual: StdDev=590.3 _____

-1000 .I. ...

-0003

0510 15 20 25 30

TimeI

B-124



1500 - - ~~HPOP R3 (209,395,1212) __________

1000-

-500-

-500 5 10 15 20 25 30

Time (Solid-rTeal, Dotted prediction)

500 ____ _____ Residual: S tdDev=167 _____

500-

-1000-
0 5 10 15 20 25 30

Time

B-125



4000 ~~~HPOP R3 (209,395,1212) _________

4000

3000-Rsda:Sde=6 __________

2500

0 015 20 25 30

Tim (So ie otd-rdci

1000Resiual:S ! d~ev-1I
.. ... ... ...... .... ... .... ... ...... .... ... .... ... ... .... ... .... ... .... ... .... ... .... ... .... ... ..

500I
.. ...... ... .... ... .... ... .... ...... ... .... ... .... ... .... .. .... ... .... ..

...... ........ .. I

0-12



800HPOP R3 (209 395,1212)

6000 - . . ......

.' .. .....-.. ... ...... ..

~4000-

2 0 0 0 - ........... .. .... .. ... .... .. ....... .. ....... .......

0 5 10 15 20 25 30
Time (Solid=real, Dotted=prediction)

__________________Residual: StdDev=382.5 ___________2000

1000 .

~-2000'*.

0 5 10 15 20 25 30
Time

B-127



I
I
I
I
I
I
I
I

Regression equation results using best 1
correlating parameters including redundants.
Correlation coefficients based on "family average" derived coefficients.

Test A2497 @109% RPL

I
I
I
1
I
I
I

B- 128I



580

575

570

565

1< 550

545-

540-

535

5400 405 410 415 420 425 430 435 440

Time (sec)

B- 129



0.4

0.3-

0.2-

*-0.1

-0.1

-0.1-

-0.3
400 405 410 415 420 425 430 435 440

Time (sec)I

B-130



* 0.5

0.4-

I 0.3-

0.2

I 0.1

0

-0.1

I -0.2-

* -0.3-

-0.41
400 405 410 415 420 425 430 435 440

Time (sec)

BU3



0.05

0 I
-0.05

-0.11

4)-0.15

S-0.2-

-0.25-

-0.3 -I

-0.35-

400 405 410 415 420 425 430 435 4401

Time (sec)

B-132



I -1.6
-1.65-

I 41.7

I -1.75

I -1.95-

-2-

I -2.05-

-2.1I400 405 410 415 420 425 430 435 440

Time (sec)

B13



15

10 I

-5 j -I '

-1

-15 405 410 415 420 425 430 435 440I
400 Time (sec)I

B-134



10

-5

10

-20

-103



35

30 I
25-

20-

15

10I

U 5

0I

-5-I

-10 I
-15 L

400 405 410 415 420 425 430 435 440

Time (sec)I

B-136



20-

0

-20

-40-

-60-

-80 p

400 405 410 415 420 425 430 435 440

Time (sec)

B-137



1.2 ---

0.81I
S 0.6I

U

C6 0.4

< 0.2

0 1
-0.2-

-0.4'II
400 405 410 415 420 425 430 435 440

Time (sec)I

B-138



3.8

3.6-

3.4

3.2

<2.8

2.6

2.4

2.2
400 405 410 415 420 425 430 435 440

Time (sec)

B-139



0.12

0.1 I
0.08-

0.06-

:0.04-I

0

-0.02I

-0.043

-0.06

-0.08-
400 405 410 415 420 425 430 435 440

Time (sec)I

B-140



0.12

0.1

0.08

0.06

S0.04

~-0.02

o 0-

-0.02-

-0.04-

-0.06-

-0.08
400 405 410 415 420 425 430 435 440

Time (sec)

B-141



0.4

0.3

0.2-

.~0.1

LLI
0-

-0.1-

-0.2'

400 405 410 415 420 425 430 435 440

Time (sec)

B-142



* 0.4

0.3-

* 0.2-

* 0.1-

C) 0 -

* ~ -0.2
-0.3

-0.4-

* -0.5-

-0.61
400 405 410 415 420 425 430 435 440

Time (sec)

BI4



I
0.8 I
0.6 I
0.4

0

-0.2
I

-0.4 -I

0!

-0.6

400 405 410 415 420 425 430 435 440

Time (sec)

I
I
I
I
I
I
I
I
I

B-144



0.5

0.4-

1 0.3-

I 0.2
S 0.1

I 0

I -0.1
-0.2

-0.3

I -0.4-

-0.51
400 405 410 415 420 425 430 435 440

Tine (sec)

BI4



30

20-

10

-10 1
-20 1

-30_ _ __ _ _ _ __ _ _ _ __ _ _ _ __ _ _

400 405 410 415 -i20 425 430 435 440

Time (sec)

B-146



I 60

I 40-

20-

I *20

-20

-40

-60
400 405 410 415 420 425 430 435 440

Time (sec)

B-147



0.5 -I

0.

-0.1

400 405 410 415 420 425 430 435 440

Time (sec)I

B-141



I 2

1.5-

~- 0.5-

I400 405 410 415 420 425 430 435 440

Time (sec)

I B-149



2.5

2-

1.5-

-0.5 400 05 10 45 40 45 43 43 lI
Tie(sc

B-5



1 0.5

0

S -0.5........

1. -

-2.5
400 405 410 415 420 425 430 435 440

Time (sec)

B15



4 I
3.5-I

3-I

0 2.5I

2

1.5I

0.5

0 II

400 405 410 415 420 425 430 435 440

Time (sec)

B-152



1 2
I 1.5 -

I 0.5

-0.5

-2-

S-0.5

I400 405 410 415 420 425 430 435 440

Time (sec)

BI5



14I

12

10

8

6

4I

2 1Ip
400 405 410 415 420 425 430 435 440

Time (sec)I

B-154



10

* 8

I 6

4

I II il

0-

-2I400 405 410 415 420 425 430 435 440
Time (sec)

BU5



-0.67
-0.68-I

-0.69-

-0.7-

~ 0.71I

S-0.72

S-0.73

-0.74I
-0.74

-0.75-

-0.76'

400 405 410 415 420 425 430 435 440

Time (sec)I

B-156



I 0.75

0.74-

I 0.71

7; 0.7

I<
0.69-

I 0.68-

I 0.67

0.66
400 405 410 415 420 425 430 435 440

Time (sec)

BI5



195

190 1
185-I

*~180

R

S175

< 170-

165-

160-

1551I
400 405 410 415 420 425 430 435 440

Time (sec)

B-158



I -180

j -200-

I -220-

I ~ -240-

260

I -280

I -300

-3201I400 405 410 415 420 425 430 435 40

Time (sec)

I-s



10

0-

-10-

S -203

-30-I

-40 I
-501

400 405 410 415 420 425 430 435 440

Time (sec)I

B-160



I -2-

-3

4) -4

I 0~ -6

I -7-

I -8-

-9I400 405 410 415 420 425 430 435 440

Time (sec)

BI6



-8

-8.5

-9

-9.5-

0

-10.5 I

400 405 410 415 420 425 430 435 440

Time (sec)I

B-162



-250 I

-300

I -350-

j400 405 410 415 420 425 430 435 440

Time (sec)

B-163



150I

100 'I
50-

-50

-100-I

-150 , 1
400 405 410 415 420 425 430 435 440

Time (sec) I

B
I
I
I
I
I
I
I
I

B-164 I



200

1 50-

50

0-

-50-

-100-

-150 p

400 405 410 415 420 425 430 435 440

Time (sec)

B-165



-0.4
-0.4

-0.5-I

S-0.55-

S-0.6

-0.7

-0.75

-0.8 p

400 405 410 415 420 425 430 435 440

Time (sec)I

B-166



2.4

2.3

2.2

2.1

Cd r

2-

1.9-

1.8
400 405 410 415 420 425 430 435 440

Time (sec)

B-167



I
150 I
100-

50 I

0

-50"

-100I a
400 405 410 415 420 425 430 435 440

Time (sec) I

I
I
I
I
I
I
I
I
I

B-168 I



Regression equation results using best
non-redundant parameters and "family average"
coefficients.

Test Al 619 @104% RPL
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[4ENCORP Aerojet TechSystems
AER )JE--" Huntsville Operations

700 Boulevard South Suite 306
Huntsville AL 35802-2176

(205) 883-0500
TO: ML Gage 11 April 1990

FROM: DM Matson

DISTRIBUTION: JH Berroteran, RL Bickford, DB Makel, Dept. 9842 file

SUBJECT: Two-sigma Variation of CADS Sensor Data as a Function of
Engine Power Level

Enclosures: (1) Typical Flight Data for Selected Parameters
2 CADS Flight Data as a Function of Engine Power Level

The attached enclosures contain flight data taken from histo ical SSME
sources. Enclosure 1 contains typical flight data for chamber pressure, Lox inlet
pressure, and turbine discharge temperatures for fuel and ox pumps. These
parameters are selected such that the CADS data in enclosure 2 can be intelligently
correlated.

The main combustion chamber pressure was selected to indicate power level
as a function of time for the flight of engine 0217. The nominal power drops from
104 percent to 65 percent between approximately thirty to seventy seconds from
liftoff and then returns to 104 percent. It will be obvious later that the only truly
meaningful data at maximum Qis represented by the 104 percent data base in
enclosure 2.

LOX inlet pressure shows a maximum at about 80 seconds and a minimum at
about 120 seconds after liftoff. These points represent maximum Q and SRB
separation, respectively. In order to evaluate the flight data, NASA engineers
elected to examine these two operational modes and composed two data baselines.
The method used to identify these modes was to take data at the maximum fuel
turbine and maximum ox turbine temperature conditions. Data showing this effect
occurring at approximately 90 and 120 seconds after liftoff can be respectively seen
in the last two sensor traces in enclosure 1.

The results of the two-sigma analysis are shown in enclosure 2.

If I can be of any fiuther assistance, please call. For more information on
this database, NASA engineer Mike Ise (pronounced "Easy) can be reached at
(205)544-4946. He is most helpful but the demands on his time are high.

Douglas M. Matson
Materials/Test Specialist
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I

ENCLOSURE1 Typical Flight Data for Selected Parameters

!
MCC Pressure

LOX Inlet Pressure

HPFTI Discharge Temperature I

HPOTT Discharge Temperature

I
I
I
I
I
I
I
H
1

All data taken from Engine S/N 2017
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ENCLOSUREI CADS Flight Data as a Function of EnginPweLve

Phase 11 Data Base (Issue Date 10-13-89)
summary of CADS sensor data encompassing
approximately 150 flight firings
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Commercially Available Pattern Matching
and

Neural Network Software

Package Name Product Description Publisher

1. NeuroSym Library of neural networks programmed NeuroSym Corporation
Neurocomputing in C language; requires C compiler; P. 0. Box 980683
Library source code provided; 12 architectures Houston, TX 77098-0683

included. (713) 523-5777

2. Brain Maker Stand-alone neural net development tool; California Scientific
V 2.3 Some C source code provided with Software
Brain Maker Professional V 2.0; 8 architectures 10141 Evening Star Dr., #6
Professional included. Grass Valley, CA 95945
V 2.0 (916) 477-7481

3. NeuroShell Stand-alone neural net development tool; Ward Systems Group, Inc.
Source code provided with run time option; 245 West Patrick Street
2 architectures available. Frederick, MD 21701

4. Professional U1 Stand-alone neural net development tool; Neural Ware, Inc.
Plus 31 architectures supported. Penn Center West,

Bldg. IV, Suite
Pittsburg, PA 15276
(412) 787-8222

5. Explore Net Stand-alone neural net development tool; Hecht-Nielsen
3000 requires AT with Microsoft Windows. Neurocomputers

21 architectures included; no source 5501 Oberlin Drive
code available. San Diego, CA 92121

(619) 546-8877

6. pLOGIC Stand-alone statistical pattern-recognition pLOGIC Knowledge
software; requires 336-based PC with Systems, Inc.
math coprocessor, plus 2 megabytes 23133 Hawthorne Blvd.,
extended memory; source code available, 3rd Floor
but not included. Torrance, CA 90505

(213) 378-3760

7. NDS 1000 Stand-alone neural network pattern Nestor, Inc.
Version 1.2 recognition tool; uses 1 proprietary archi- One Richmond Square

tecture; versions available for PC and Sun Providence, RI 02906
Workstations; source code not available.
Can be imbedded in hardware.

8. MacBrain Stand-alone neural net development tool; Neurix
requries Macintosh Plus or better; 12 archi- 327 A Street, 6th Fl.
tectures and some source code (C and Boston, MA 02102
Pascal) included. (617) 577-1202
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